相关习题
 0  155808  155816  155822  155826  155832  155834  155838  155844  155846  155852  155858  155862  155864  155868  155874  155876  155882  155886  155888  155892  155894  155898  155900  155902  155903  155904  155906  155907  155908  155910  155912  155916  155918  155922  155924  155928  155934  155936  155942  155946  155948  155952  155958  155964  155966  155972  155976  155978  155984  155988  155994  156002  266669 

科目: 来源: 题型:解答题

某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.

(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)

运行次数n
输出y的值
为1的频数
输出y的值
为2的频数
输出y的值
为3的频数
30
14
6
10




2 100
1 027
376
697
 
乙的频数统计表(部分)
运行次数n
输出y的值
为1的频数
输出y的值
为2的频数
输出y的值
为3的频数
30
12
11
7




2 100
1 051
696
353
 
当n=2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;
(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:

品牌

 
 

 
首次出现故障时间x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轿车数量(辆)
2
3
45
5
45
每辆利润(万元)
1
2
3
1.8
2.9
 
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;
(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;
(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.
(1)求此人到达当日空气质量优良的概率;
(2)求此人在该市停留期间只有1天空气重度污染的概率;
(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目: 来源: 题型:解答题

为调查某社区居民的业余生活状况,研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:

     休闲方式
性别  
看电视
看书
合计

10
50
60

10
10
20
合计
20
60
80
 
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和数学期望;
(2)根据以上数据,我们能否在犯错误的概率不超过0.01的前提下,认为“在20:00-22:00时间段居民的休闲方式与性别有关系”?
参考公式:K2,其中n=a+b+c+d.
参考数据:
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
k0
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目: 来源: 题型:解答题

现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X Y|,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目: 来源: 题型:解答题

在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为.
(1)求随机变量 的最大值,并求事件“取得最大值”的概率;
(2)求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

甲、乙二人参加知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题,那么
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一个抽到选择题的概率是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

“光盘行动”倡导厉行节约,反对铺张浪费,带动大家珍惜粮食,吃光盘子中的食物,得到从中央到民众的支持,为了解某地响应“光盘行动”的实际情况,某校几位同学组成研究性学习小组,从某社区岁的人群中随机抽取n人进行了一次调查,得到如下统计表:

(1)求a,b的值,并估计本社区岁的人群中“光盘族”所占比例;
(2)从年龄段在的“光盘族”中,采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.
(1)已知选取2人中1人来自中的前提下,求另一人来自年龄段中的概率;
(2)求2名领队的年龄之和的期望值(每个年龄段以中间值计算).

查看答案和解析>>

科目: 来源: 题型:解答题

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.


 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5
 
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
 
附:,其中n=a+b+c+d.)
 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目: 来源: 题型:解答题

一种电脑屏幕保护画面,只有符号随机地反复出现,每秒钟变化一次,每次变化只出现之一,其中出现的概率为p,出现的概率为q,若第k次出现,则记;出现,则记,令
(1)当时,求的分布列及数学期望.
(2)当时,求的概率.

查看答案和解析>>

同步练习册答案