相关习题
 0  155812  155820  155826  155830  155836  155838  155842  155848  155850  155856  155862  155866  155868  155872  155878  155880  155886  155890  155892  155896  155898  155902  155904  155906  155907  155908  155910  155911  155912  155914  155916  155920  155922  155926  155928  155932  155938  155940  155946  155950  155952  155956  155962  155968  155970  155976  155980  155982  155988  155992  155998  156006  266669 

科目: 来源: 题型:解答题

电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加游戏者单独闯第一关、第二关、第三关成功的概率分别为,记该参加者闯三关所得总分为ξ.
(1)求该参加者有资格闯第三关的概率;
(2)求ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同.
(1)求3个学生选择了3门不同的选修课的概率;
(2)求恰有2门选修课这3个学生都没有选择的概率;
(3)设随机变量X为甲、乙、丙这三个学生选修数学史这门课的人数,求X的分布列.

查看答案和解析>>

科目: 来源: 题型:解答题

设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.

查看答案和解析>>

科目: 来源: 题型:解答题

有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.
(1)求仅闯过第一关的概率;
(2)记成功闯过的关数为ξ,求ξ的分布列.

查看答案和解析>>

科目: 来源: 题型:解答题

A高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A高校自主招生考试,已知该生在每道程序中通过的概率均为,每道程序中得优、良、中的概率分别为p1、p2.
(1)求学生甲不能通过A高校自主招生考试的概率;
(2)设ξ为学生甲在三道程序中获优的次数,求ξ的分布列.

查看答案和解析>>

科目: 来源: 题型:解答题

袋中装有若干个质地均匀大小一致的红球和白球,白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直至第5次摸球后结束.
(1)求摸球3次就停止的事件发生的概率;
(2)记摸到红球的次数为,求随机变量的分布列及其期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有两条巷道通往作业区(如下图),巷道有三个易堵塞点,各点被堵塞的概率都是巷道有两个易堵塞点,被堵塞的概率分别为

(1)求巷道中,三个易堵塞点最多有一个被堵塞的概率;
(2)若巷道中堵塞点个数为,求的分布列及数学期望,并按照"平均堵塞点少的巷道是较好的抢险路线"的标准,请你帮助救援队选择一条抢险路线,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

低碳生活,从“衣食住行”开始.在国内一些网站中出现了“碳足迹”的应用,人们可以由此计算出自己每天的碳排放量,如家居用电的二氧化碳排放量(千克)=耗电度数,家用天然气的二氧化碳排放量(千克)=天然气使用立方数等.某校开展“节能减排,保护环境,从我做起!”的活动,该校高一、六班同学利用假期在东城、西城两个小区进行了逐户的关于“生活习惯是否符合低碳排放标准”的调查.生活习惯符合低碳观念的称为“低碳家庭”,否则称为“非低碳家庭”.经统计,这两类家庭占各自小区总户数的比例数据如下:

(1)如果在东城、西城两个小区内各随机选择2个家庭,求这个家庭中恰好有两个家庭是“低碳家庭”的概率;
(2)该班同学在东城小区经过大力宣传节能减排的重要意义,每周“非低碳家庭”中有的家庭能加入到“低碳家庭”的行列中.宣传两周后随机地从东城小区中任选个家庭,记表示个家庭中“低碳家庭”的个数,求

查看答案和解析>>

科目: 来源: 题型:解答题

小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.

(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);
(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.

查看答案和解析>>

同步练习册答案