相关习题
 0  155818  155826  155832  155836  155842  155844  155848  155854  155856  155862  155868  155872  155874  155878  155884  155886  155892  155896  155898  155902  155904  155908  155910  155912  155913  155914  155916  155917  155918  155920  155922  155926  155928  155932  155934  155938  155944  155946  155952  155956  155958  155962  155968  155974  155976  155982  155986  155988  155994  155998  156004  156012  266669 

科目: 来源: 题型:解答题

为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:

评估的平均得分



全市的总体交通状况等级
不合格
合格
优秀
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;
(2)用简单随机抽样方法从这条道路中抽取条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

一个口袋中有个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(1)试用含的代数式表示一次摸球中奖的概率
(2)若,求三次摸球恰有一次中奖的概率;
(3)记三次摸球恰有一次中奖的概率为,当为何值时,取最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:

答对题目数

8
9


2
13
12
8

3
37
16
9
(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;
(2)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:

甲公司某员工A
 
乙公司某员工B
3
9
6
5
8
3
3
2
3
4
6
6
6
7
7
 
 
 
 
 
 
0
1
4
4
2
2
2
 
 
每名快递员完成一件货物投递可获得的劳务费情况如下:
甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;
(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.

查看答案和解析>>

科目: 来源: 题型:解答题

将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.
(1)求直线与圆相切的概率;
(2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

甲、乙、丙、丁4名同学被随机地分到三个社区参加社会实践,要求每个社区至少有一名同学.
(1)求甲、乙两人都被分到社区的概率;
(2)求甲、乙两人不在同一个社区的概率;
(3)设随机变量为四名同学中到社区的人数,求的分布列和的值.

查看答案和解析>>

科目: 来源: 题型:解答题

已知关于的一次函数
(1)设集合,分别从集合中随机取一个数作为,求函数是增函数的概率;
(2)若实数满足条件,求函数的图象不经过第四象限的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.
(1)求选手甲进入复赛的概率;
(2)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

从某小组的2名女生和3名男生中任选2人去参加一项公益活动.
(1)求所选2人中恰有一名男生的概率;
(1)求所选2人中至少有一名女生的概率.

查看答案和解析>>

同步练习册答案