相关习题
 0  155836  155844  155850  155854  155860  155862  155866  155872  155874  155880  155886  155890  155892  155896  155902  155904  155910  155914  155916  155920  155922  155926  155928  155930  155931  155932  155934  155935  155936  155938  155940  155944  155946  155950  155952  155956  155962  155964  155970  155974  155976  155980  155986  155992  155994  156000  156004  156006  156012  156016  156022  156030  266669 

科目: 来源: 题型:解答题

某校为组建校篮球队,对报名同学进行定点投篮测试,规定每位同学最多投3次,每次在AB处投篮,在A处投进一球得3分,在B处投进一球得2分,否则得0分,每次投篮结果相互独立,将得分逐次累加并用X表示,如果X的值不低于3分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮方案有以下两种:
方案1:先在A处投一球,以后都在B处投;
方案2:都在B处投篮.
已知甲同学在A处投篮的命中率为0.4,在B处投篮的命中率为0.6.
(1)甲同学若选择方案1,求X=2时的概率;
(2)甲同学若选择方案2,求X的分布列和数学期望;
(3)甲同学选择哪种方案通过测试的可能性更大?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.
(1)求取出的3个球编号都不相同的概率;
(2)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

为贯彻“激情工作,快乐生活”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为.
(1)求选手甲答题次数不超过4次可进入决赛的概率;
(2)设选手甲在初赛中答题的个数为X,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

市民李先生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车相互独立.假设李先生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班.假设道路ABD上下班时间往返出现拥堵的概率都是,道路CE上下班时间往返出现拥堵的概率都是,只要遇到拥堵上学和上班的都会迟到.

(1)求李先生的小孩按时到校的概率;
(2)李先生是否有七成把握能够按时上班?
(3)设X表示李先生下班时从单位乙到达小学丙遇到拥堵的次数,求X的均值.

查看答案和解析>>

科目: 来源: 题型:解答题

某学生参加某高校的自主招生考试,须依次参加ABCDE五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试.已知每一项测试都是相互独立的,该生参加ABCD四项考试不合格的概率均为,参加第五项不合格的概率为.
(1)求该生被录取的概率;
(2)记该生参加考试的项数为X,求X的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:解答题

甲、乙两人玩猜数字游戏,规则如下:
①连续竞猜3次,每次相互独立;
②每次竞猜时,先由甲写出一个数字,记为a,再由乙猜甲写的数字,记为b,已知ab∈{0,1,2,3,4,5},若|ab|≤1,则本次竞猜成功;
③在3次竞猜中,至少有2次竞猜成功,则两人获奖.
求甲乙两人玩此游戏获奖的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的2×2列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
 
6
 
女生
10
 
 
合计
 
 
48
已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上面的2×2列联表补充完整(不用写计算过程);
(2)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为X,求X的分布列与数学期望.
下面的临界值表供参考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(参考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

科目: 来源: 题型:解答题

袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个,已知从袋子中随机抽取1个小球,取到标号为2的小球的概率是.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个球,记第一次取出小球标号为a,第二次取出的小球标号为b.①记“ab=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数xy,求事件“x2y2>(ab)2恒成立”的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:

品牌


首次出现故
障时间x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轿车数量(辆)
2
3
45
5
45
每辆利润
(万元)
1
2
3
1.8
2.9
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率.
(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1X2的分布列.
(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

为备战2016年奥运会,甲、乙两位射击选手进行了强化训练.现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)画出甲、乙两位选手成绩的茎叶图;
(2)现要从中选派一人参加奥运会封闭集训,从统计学角度,你认为派哪位选手参加合理?简单说明理由;
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为ξ,求ξ的分布列及均值E(ξ).

查看答案和解析>>

同步练习册答案