相关习题
 0  155847  155855  155861  155865  155871  155873  155877  155883  155885  155891  155897  155901  155903  155907  155913  155915  155921  155925  155927  155931  155933  155937  155939  155941  155942  155943  155945  155946  155947  155949  155951  155955  155957  155961  155963  155967  155973  155975  155981  155985  155987  155991  155997  156003  156005  156011  156015  156017  156023  156027  156033  156041  266669 

科目: 来源: 题型:解答题

如图,从有6条网线,数字表示该网线单位时间内可以通过的最大信息量,现从中任取3条网线且使每条网线通过最大信息量,设这三条网线通过的最大信息之和为.

(1)当时,线路信息畅通,求线路信息畅通的概率;
(2)求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

省少年篮球队要从甲、乙两所体校选拔队员。现将这两所体校共20名学生的身高绘制成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.

(1)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随
机选2人,那么至少有一人是“高个子”的概率是多少?
(2)从两队的“高个子”中各随机抽取1人,求恰有1人身高达到190cm的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

省少年篮球队要从甲、乙两所体校选拔队员。现将这两所体校共20名学生的身高绘制成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.

(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中随机选3名队员,用表示乙校中选出的“高个子”人数,试求出的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某工厂三个车间共有工人1000人各车间男、女工人数如表:

已知在全厂工人中随机抽取1名,抽到第二车间男工的概率是0.15.
(1)求x的值;
(2)现用分层抽样的方法在第一、第二、第三车间共抽取60名工人参加座谈分,问应在第三车间抽取多少名?
(3)已知y≥185,z≥185,求第三车间中女工比男工少的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

对某校高一年级学生参加社区服务次数统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:

(1)求出表中的值;
(2)在所取样本中,从参加社区服务的次数不少于次的学生中任选人,求至少一人参加社区服务次数在区间内的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:

付款方式
分1期
分2期
分3期
分4期
分5期
频数
40
20

10

已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润为2万元.用表示经销一辆汽车的利润.
(1)求上表中的值;
(2)若以频率作为概率,求事件:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率;(3)求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

(14分)如图所示,机器人海宝按照以下程序运行

1从A出发到达点B或C或D,到达点B、C、D之一就停止;
②每次只向右或向下按路线运行;
③在每个路口向下的概率
④到达P时只向下,到达Q点只向右.
(1)求海宝过点从A经过M到点B的概率,求海宝过点从A经过N到点C的概率;
(2)记海宝到点B、C、D的事件分别记为X=1,X=2,X=3,求随机变量X的分布列及期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响。已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.
(I)求乙、丙两人各自回答这道题正确的概率;
(II)用表示回答该题正确的人数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

小波以游戏方式决定参加学校合唱团还是参加学校排球队.游戏规则为:以O为起点,再从(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为.若就参加学校合唱团,否则就参加学校排球队.

(I)求小波参加学校合唱团的概率;
(II)求的分布列和数学期望.

查看答案和解析>>

同步练习册答案