科目: 来源: 题型:解答题
某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有
位学生,每次活动均需该系
位学生参加(
和
都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系
位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为![]()
(Ⅰ)求该系学生甲收到李老师或张老师所发活动通知信息的概率;
(Ⅱ)求使
取得最大值的整数
.
查看答案和解析>>
科目: 来源: 题型:解答题
下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天![]()
(Ⅰ)求此人到达当日空气重度污染的概率
(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
查看答案和解析>>
科目: 来源: 题型:解答题
某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为
,中奖可以获得2分;方案乙的中奖率为
,中奖可以获得3分;未中奖则不得分。每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为
,求
的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
查看答案和解析>>
科目: 来源: 题型:解答题
下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.![]()
(Ⅰ)求此人到达当日空气质量优良的概率;
(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
查看答案和解析>>
科目: 来源: 题型:解答题
袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.
(I)若从袋中一次摸出2个小球,求恰为异色球的概率;
(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数 都没有超过红球的个数,记此时红球的个数为
,求
的分布列及数学期望E
.
查看答案和解析>>
科目: 来源: 题型:解答题
某普通高中共有教师
人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示:
| | 第一批次 | 第二批次 | 第三批次 |
| 女教师 | |||
| 男教师 |
查看答案和解析>>
科目: 来源: 题型:解答题
在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:解答题
某小组共有
五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)
如下表所示:
| | A | B | C | D | E |
| 身高 | 1.69 | 1.73 | 1.75 | 1.79 | 1.82 |
| 体重指标 | 19.2 | 25.1 | 18.5 | 23.3 | 20.9 |
查看答案和解析>>
科目: 来源: 题型:解答题
甲、乙两支排球队进行比赛,约定先胜
局者获得比赛的胜利,比赛随即结束。除第五局甲队获胜的概率是
外,其余每局比赛甲队获胜的概率都是
。假设各局比赛结果相互独立。
(Ⅰ)分别求甲队以
胜利的概率;
(Ⅱ)若比赛结果为求
或
,则胜利方得
分,对方得
分;若比赛结果为
,则胜利方得
分、对方得
分。求乙队得分
的分布列及数学期望。
查看答案和解析>>
科目: 来源: 题型:解答题
经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内经销该农产品的数量,T表示利润.![]()
(Ⅰ)将T表示为x的函数
(Ⅱ)根据直方图估计利润T不少于57000元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x
,则取x=105,且x=105的概率等于需求量落入[100,110
,求T的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com