相关习题
 0  155881  155889  155895  155899  155905  155907  155911  155917  155919  155925  155931  155935  155937  155941  155947  155949  155955  155959  155961  155965  155967  155971  155973  155975  155976  155977  155979  155980  155981  155983  155985  155989  155991  155995  155997  156001  156007  156009  156015  156019  156021  156025  156031  156037  156039  156045  156049  156051  156057  156061  156067  156075  266669 

科目: 来源: 题型:解答题

某人上楼梯,每步上一阶的概率为,每步上二阶的概率为,设该人从台阶下的平台开始出发,到达第阶的概率为.
(1)求;;
(2)该人共走了5步,求该人这5步共上的阶数ξ的数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

一家化妆品公司于今年三八节期间在某社区举行了为期三天的“健康使用化妆品知识讲座”.每位社区居民可以在这三天中的任意一天参加任何一个讨论,也可以放弃任何一个讲座(规定:各个讲座达到预先设定的人数时称为满座).统计数据表明,各个讲座各天满座的概率如下表:

 
洗发水讲座
洗面奶讲座
护肤霜讲座
活颜营养讲座
面膜使用讲座
3月8日





3月9日





3月10日





(1)求面膜使用讲座三天都不满座的概率;
(2)设3月9日各个讲座满座的数目为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

为了解《中华人民共国道路交通安全法》在学生中的普及情况,调查部门对某学校6名学生进行问卷调查,6人得分情况如下:
5,6,7,8,9,10。
把这6名学生的得分看成一个总体。
(1)求该总体的平均数;
(2)求该总体的的方差;
(3)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,求该样本平均数于总体平均数之差的绝对值不超过0.5的概率。

查看答案和解析>>

科目: 来源: 题型:解答题

若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,求:
(1)点P在直线上的概率;
(2)点P在圆外的概率。

查看答案和解析>>

科目: 来源: 题型:解答题

甲、乙两人独立地破译1个密码, 他们能译出密码的概率分别为, 求:
(1)甲、乙两人至少有一个人破译出密码的概率;   
(2)两人都没有破译出密码的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

某射手在一次射击中射中10环、9环、8环、7环, 7环以下的概率
分别为0.24,0.28,0.19,0.16,0.13,计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不是8环的概率。

查看答案和解析>>

科目: 来源: 题型:解答题

一箱里有10件产品,其中3件次品,现从中任意抽取4件产品检查.
(1)求恰有1件次品的概率;
(2)求至少有1件次品的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在
下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是
(Ⅰ)求小球落入袋中的概率
(Ⅱ)在容器入口处依次放入4个小球,记为落入袋中的小球个数,试求的概率和的数学期望

查看答案和解析>>

科目: 来源: 题型:解答题

为了防止受到核污染的产品影响我国民众的身体健康,要求产品进入市场前必须进行两轮核放射检测,只有两轮都合格才能进行销售。已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响。
(1)求该产品不能销售的概率
(2)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元)。已知一箱中有4件产品,记可销售的产品数为X,求X的分布列,并求一箱产品获利的均值。

查看答案和解析>>

科目: 来源: 题型:解答题

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日   期
12月1日
12月2日
12月3日
12月4日
12月5日
温差(°C)
10
11
13
12
8
发芽数(颗)
23
25
30
26
16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程已知回归直线方程是:,其中,
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

同步练习册答案