相关习题
 0  155882  155890  155896  155900  155906  155908  155912  155918  155920  155926  155932  155936  155938  155942  155948  155950  155956  155960  155962  155966  155968  155972  155974  155976  155977  155978  155980  155981  155982  155984  155986  155990  155992  155996  155998  156002  156008  156010  156016  156020  156022  156026  156032  156038  156040  156046  156050  156052  156058  156062  156068  156076  266669 

科目: 来源: 题型:解答题

张师傅驾车从公司开往火车站,途径4个公交站,这四个公交站将公司到火车站
分成5个路段,每个路段的驾车时间都是3分钟,如果遇到红灯要停留1分钟,假设他在各
交通岗是否遇到红灯是相互独立的,并且概率都是
(1)求张师傅此行时间不少于16分钟的概率
(2)记张师傅此行所需时间为Y分钟,求Y的分布列和均值

查看答案和解析>>

科目: 来源: 题型:解答题

如图,正方形的边长为2.

(1)在其四边或内部取点,且,求事件:“”的概率;
(2)在其内部取点,且,求事件“的面积均大于”的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

学校在开展学雷锋活动中,从高二甲乙两班各选3名学生参加书画比赛,其中高二甲班选出了1女2男,高二乙班选出了1男2女。
(1)若从6个同学中抽出2人作活动发言,写出所有可能的结果,并求高二甲班女同学,高二乙班男同学至少有一个被选中的概率。
(2)若从高二甲班和高二乙班各选一名现场作画,写出所有可能的结果,并求选出的2名同学性别相同的概率。

查看答案和解析>>

科目: 来源: 题型:解答题

一袋中有6个黑球,4个白球.
(1)依次取出3个球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;
(2)有放回地依次取出3球,已知第一次取的是白球,求第三次取到黑球的概率;
(3)有放回地依次取出3球,求取到白球个数X的分布列、期望和方差.

查看答案和解析>>

科目: 来源: 题型:解答题


某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)

30
25

10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(1)确定的值,并求顾客一次购物的结算时间的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过分钟的概率.(注:将频率视为概率)

查看答案和解析>>

科目: 来源: 题型:解答题

本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。
(1)求出甲、乙两人所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望

查看答案和解析>>

科目: 来源: 题型:解答题

某校设计了一个实验考查方案:考生从道备选题中一次性随机抽取道题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中道题的便可通过.已知道备选题中考生甲有道题能正确完成,道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)求甲、乙两考生正确完成题数的概率分布列,并计算其数学期望;
(2)请分析比较甲、乙两考生的实验操作能力.

查看答案和解析>>

科目: 来源: 题型:解答题

某中学校本课程共开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:
(1)求这3名学生选修课所有选法的总数;
(2)求恰有2门选修课没有被这3名学生选择的概率;
(3)求A选修课被这3名学生选择的人数的数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某校高三年级组为了缓解学生的学习压力,举办元宵猜灯谜活动。规定每人最多猜3道,在A区猜对一道灯谜获3元奖品;在B区猜对一道灯谜获2元奖品,如果前两次猜题后所获奖品总额超过3元即停止猜题,否则猜第三道题。假设某同学猜对A区的任意一道灯谜的概率为0.25,猜对B区的任意一道灯谜的概率为0.8,用表示该同学猜灯谜结束后所得奖品的总金额。
(1)若该同学选择先在A区猜一题,以后都在B区猜题,求随机变量的数学期望;
(2)试比较该同学选择都在B区猜题所获奖品总额超过3元与选择(1)中方式所获奖品总额超过3元的概率的大小。

查看答案和解析>>

同步练习册答案