相关习题
 0  155883  155891  155897  155901  155907  155909  155913  155919  155921  155927  155933  155937  155939  155943  155949  155951  155957  155961  155963  155967  155969  155973  155975  155977  155978  155979  155981  155982  155983  155985  155987  155991  155993  155997  155999  156003  156009  156011  156017  156021  156023  156027  156033  156039  156041  156047  156051  156053  156059  156063  156069  156077  266669 

科目: 来源: 题型:解答题

为了参加贵州省高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:

班级
高三()班
高三()班
高二()班
高二()班
人数
12
6
9
9
(Ⅰ)现采取分层抽样的方法从这四个班中抽取运动员,求应分别从这四个班抽出的队员人数;
(Ⅱ)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

2011年4月28日世界园艺博览会将在陕西西安浐灞生态区举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识。志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答。知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减。答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用。
假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是,且各题回答正确与否相互之间没有影响.
(Ⅰ) 用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期望;
(Ⅱ)求志愿者甲能被录用的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

袋子里有大小相同但标有不同号码的3个红球和4个黑球,从袋子里随机取出4个球.
⑴求取出的红球数?的概率分布列;
⑵若取到每个红球得2分,取到每个黑球得1分,求得分不超过5分的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在区域返券60元;停在区域返券30元;停在区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元),求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某某种饮料每箱6听,如果其中有两听不合格产品.
(1)质检人员从中随机抽出1听,检测出不合格的概率多大?;                    
(2)质检人员从中随机抽出2听,设为检测出不合格产品的听数,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为
(1)求该生被录取的概率;
(2)记该生参加考试的项数为,求的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:解答题

(1)甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球,求取出的两个球是不同颜色的概率。
(2)在单位圆的圆周上随机取三点A、B、C,求是锐角三角形的概率。

查看答案和解析>>

科目: 来源: 题型:解答题

一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量为取出3球中白球的个数,已知
(Ⅰ)求袋中白球的个数;
(Ⅱ)求随机变量的分布列及其数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某商场共五层,从五层下到四层有3个出口,从三层下到二层有4个出口,从二层下到一层有4个出口,从一层走出商场有6个出口。安全部门在每层安排了一名警员值班,负责该层的安保工作。假设每名警员到该层各出口处的时间相等,某罪犯在五楼犯案后,欲逃出商场,各警员同时接到指令,选择一个出口进行围堵。逃犯在每层选择出口是等可能的。已知他被三楼警员抓获的概率为
(Ⅰ)问四层下到三层有几个出口?
(Ⅱ)天网恢恢,疏而不漏,犯罪嫌疑人最终落入法网。设抓到逃犯时,他已下了层楼,写出的分布列,并求

查看答案和解析>>

科目: 来源: 题型:解答题

小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,且每个问题回答正确与否相互独立.
(1)求小王过第一关但未过第二关的概率;
(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.

查看答案和解析>>

同步练习册答案