相关习题
 0  155889  155897  155903  155907  155913  155915  155919  155925  155927  155933  155939  155943  155945  155949  155955  155957  155963  155967  155969  155973  155975  155979  155981  155983  155984  155985  155987  155988  155989  155991  155993  155997  155999  156003  156005  156009  156015  156017  156023  156027  156029  156033  156039  156045  156047  156053  156057  156059  156065  156069  156075  156083  266669 

科目: 来源: 题型:解答题

某机构向民间招募防爆犬,首先进行入围测试,计划考察三个项目:体能,嗅觉和反应.这三个项目中只要有两个通过测试,就可以入围.某训犬基地有4只优质犬参加测试,已知它们通过体能测试的概率都是1/3,通过嗅觉测试的概率都是1/3,通过反应测试的概率都是1/2.
求(1)每只优质犬能够入围的概率;
(2)若每入围1只犬给基地记10分,设基地的得分为随机变量ξ,求ξ的数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球。
(1)试问:一共有多少种不同的结果?请列出所有可能的结果;
(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

查看答案和解析>>

科目: 来源: 题型:解答题

先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

某产品按行业生产标准分成个等级,等级系数依次为,其中为标准为标准,产品的等级系数越大表明产品的质量越好,已知某厂执行标准生产该产品,且该厂的产品都符合相应的执行标准.
(Ⅰ)从该厂生产的产品中随机抽取件,相应的等级系数组成一个样本,数据如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
该行业规定产品的等级系数的为一等品,等级系数的为二等品,等级系数的为三等品,
(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;
(2)已知该厂生产一件该产品的利润y(单位:元)与产品的等级系数的关系式为:
,从该厂生产的产品中任取一件,其利润记为,用这个样本的频率分布估计总体分布,将频率视为概率,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

(10分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4。现从盒子中随机抽取卡片.
(I)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(II)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分12分)袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:
(Ⅰ)3只全是红球的概率;
(Ⅱ)3只颜色全相同的概率;
(Ⅲ)3只颜色不全相同的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

(本题满分14分)
从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(Ⅰ)求第一次试验恰摸到一个红球和一个白球概率;
(Ⅱ)记试验次数为,求的分布列及数学期望

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分12分)盒中有大小相同的编号为1,2,3,4,5,6的六只小球,规定:从盒中一次摸出'2只球,如果这2只球的编号均能被3整除,则获一等奖,奖金10元,如果这2只球的编号均为偶数,则获二等奖,奖金2元,其他情况均不获奖.
(1)若某人参加摸球游戏一次获奖金x元,求x的分布列及期望;
(2)若某人摸一次且获奖,求他获得一等奖的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

设关于的一元二次方程.
(1)若都是从集合中任取的数字,求方程有实根的概率;
(2)若是从区间[0,4]中任取的数字,是从区间[1,4]中任取的数字,求方程有实根的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒. 引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.
罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:
 
(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;
(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ

查看答案和解析>>

同步练习册答案