相关习题
 0  155895  155903  155909  155913  155919  155921  155925  155931  155933  155939  155945  155949  155951  155955  155961  155963  155969  155973  155975  155979  155981  155985  155987  155989  155990  155991  155993  155994  155995  155997  155999  156003  156005  156009  156011  156015  156021  156023  156029  156033  156035  156039  156045  156051  156053  156059  156063  156065  156071  156075  156081  156089  266669 

科目: 来源: 题型:解答题

(本题12分,)将编号为1、2、3、4的四个小球放入甲、乙、丙三只盒子内.
(1)若三只盒子都不空,且3号球必须在乙盒内有多少种不同的放法;
(2)若1号球不在甲盒内,2号球不在乙盒内,有多少种不同放法。(均须先列式再用数字作答)

查看答案和解析>>

科目: 来源: 题型:解答题

(本题12分)一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问:
(1)取出的两只球都是白球的概率是多少?
(2)取出的两只球至少有一个白球的概率是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分13分)
袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分
为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡
片颜色不同且标号之和小于4的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分12分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投次:在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次.某同学在处的命中率,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为


0
2
3
4
5






(1) 求的值;(2) 求随机变量的数学期望;
(3) 试比较该同学选择都在处投篮得分超过分与选择上述方式投篮得分超过分的概率的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

(本题满分12分)
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分12分)
在一次数学考试中,第21题和第22题为选做题. 规定每位考生必须且只须在其中选做一题. 设4名考生选做每一道题的概率均为.
(1)求其中甲、乙两名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为,求的概率分布及数学期望. 的解析

查看答案和解析>>

科目: 来源: 题型:解答题

某人一次同时抛掷两枚均匀骰子(它们的六个面分别标有点数1、2、3、4、5、6)
求:(1)两枚骰子点数相同的概率;
(2)两枚骰子点数和为5的倍数的概率。

查看答案和解析>>

科目: 来源: 题型:解答题

某中学在高三开设了4门选修课,每个学生必须且只需选修1门选修课。对于该年级的甲、乙、丙3名学生,回答下面的问题:
(1)求这3名学生选择的选修课互不相同的概率;
(2)某一选修课被这3名学生选修的人数的数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):

 
“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60
 
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率;

查看答案和解析>>

科目: 来源: 题型:解答题

(本小题满分14分)已知,,点的坐标为
(1)当时,求的坐标满足的概率。
(2)当时,求的坐标满足的概率。

查看答案和解析>>

同步练习册答案