科目: 来源: 题型:填空题
给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a、b∈R,则a-b=0⇒a=b”类比推出“若a、b∈C,则a-b=0⇒a=b”;
②“若a、b、c、d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出;“若a、b、c、d∈Q,
则a+b
=c+d
⇒a=c,b=d”;
③“若a、b∈R,则a-b>0⇒a>b”类比推出“若a、b∈C,则a-b>0⇒a>b”;
④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”.
其中类比结论正确的命题序号为________(把你认为正确的命题序号都填上).
查看答案和解析>>
科目: 来源: 题型:填空题
科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即
);如果n是奇数,则将它乘3加1(即
),不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,我们可以得到一个数列:6,3,10,5,16,8,4,2,1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:
(1)如果
,则按照上述规则施行变换后的第8项为 .
(2)如果对正整数
(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则
的所有不同值的个数为 .
查看答案和解析>>
科目: 来源: 题型:填空题
已知边长分别为a、b、c的三角形ABC面积为S,内切圆O半径为r,连接OA、OB、OC,则三角形OAB、OBC、OAC的面积分别为
cr、
ar、
br,由S=
cr+
ar+
br得r=
,类比得若四面体的体积为V,四个面的面积分别为A、B、C、D,则内切球的半径R=_____________.
查看答案和解析>>
科目: 来源: 题型:填空题
现有一个关于平面图形的命题:如图所示,同一个平面内有两个变长都是a的正方形,其中一个正方形的某起点在另一个正方形的中心,则这两个正方形重叠部分的面积恒为
,类比到空间,有两个棱长为a的正方体,其中某一个正方体的某顶点在另一个正方体的中心,则这两个正方体的重叠部分的体积恒为___![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com