相关习题
 0  159664  159672  159678  159682  159688  159690  159694  159700  159702  159708  159714  159718  159720  159724  159730  159732  159738  159742  159744  159748  159750  159754  159756  159758  159759  159760  159762  159763  159764  159766  159768  159772  159774  159778  159780  159784  159790  159792  159798  159802  159804  159808  159814  159820  159822  159828  159832  159834  159840  159844  159850  159858  266669 

科目: 来源:不详 题型:解答题

心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,上课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,并趋于稳定.分析结果和实验表明,设提出和讲述概念的时间为x(单位:分),学生的接受能力为f(x)(f(x)值越大,表示接受能力越强),
f(x)=
-0.1x2+2.6x+44,0<x≤10
60,10<x≤15
-3x+105,15<x≤25
30,25<x≤40

(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?

查看答案和解析>>

科目: 来源:不详 题型:解答题

某商品的市场需求量y1(万件),市场供应量y2(万件)与市场价格x(元/件)分别近似地满足下列关系:y1=-x+70,y2=2x-20.当y1=y2时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量.
(1)求平衡价格和平衡需求量;
(2)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?

查看答案和解析>>

科目: 来源:不详 题型:解答题

在一张矩形的纸张上画一幅宣传画,纸张的上、下边缘各留8厘米空白,左右边缘各留5厘米空白,其余的地方用来作画,要求画面面积为4840平方厘米.
(1)设画面的高为x厘米,纸张面积为y平方厘米,写出y关于x的函数解析式.
(2)怎样确定画面的高与宽的尺寸,能使宣传画所用纸张面积最小?

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=2|x|-2.
(1)作出函数f(x)的图象;
(2)由图象指出函数的单调区间及单调性(不用证明);
(3)指出函数的值域.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,某新建小区有一片边长为1(单位:百米)的正方形剩余地块ABCD,中间部分MNK是一片池塘,池塘的边缘曲线段MN为函数y=
2
9x
(
1
3
≤x≤
2
3
)
的图象,另外的边缘是平行于正方形两边的直线段.为了美化该地块,计划修一条穿越该地块的直路(宽度不计),直路l与曲线段MN相切(切点记为P),并把该地块分为两部分.记点P到边AD距离为t,f(t)表示该地块在直路左下部分的面积.
(1)求f(t)的解析式;
(2)求面积S=f(t)的最大值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使该角的顶点B落在矩形的边AD上,且折痕MN的两端点M、N分别位于边AB、BC上,设∠MNB=θ,MN=l.
(1)试将l表示成θ的函数;
(2)求l的最小值.

查看答案和解析>>

科目: 来源:不详 题型:单选题

若函数f(x)=a-x(a>0,a≠1)是定义域为R的增函数,则函数f(x)=loga(x+1)的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,公园内有一块边长为2a的正三角形ABC空地,拟改建成花园,并在其中建一直道DE方便花园管理.设D、E分别在AB、AC上,且DE均分三角形ABC的面积.
(1)设AD=x(x≥a),DE=y,试将y表示为x的函数关系式;
(2)若DE是灌溉水管,为节约成本,希望其最短,DE的位置应在哪里?若DE是参观路线,希望其最长,DE的位置应在哪里?

查看答案和解析>>

科目: 来源:不详 题型:解答题

某公司生产的A型商品通过租赁柜台进入某商场销售.第一年,商场为吸引厂家,决定免收该年管理费,因此,该年A型商品定价为每件70元,年销售量为11.8万件.第二年,商场开始对该商品征收比率为p%的管理费(即销售100元要征收p元),于是该商品的定价上升为每件
70
1-p%
元,预计年销售量将减少p万件.
(1)将第二年商场对该商品征收的管理费y(万元)表示成p的函数,并指出这个函数的定义域;
(2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p%的范围是多少?
(3)第二年,商场在所收管理费不少于14万元的前提下,要让厂家获得最大销售金额,则p应为多少?

查看答案和解析>>

科目: 来源:不详 题型:单选题

函数y=(
1
2
)x2+2x
的单调增区间为(  )
A.[-1,+∞)B.(-∞,-1]C.(-∞,+∞)D.(-∞,0]

查看答案和解析>>

同步练习册答案