相关习题
 0  161045  161053  161059  161063  161069  161071  161075  161081  161083  161089  161095  161099  161101  161105  161111  161113  161119  161123  161125  161129  161131  161135  161137  161139  161140  161141  161143  161144  161145  161147  161149  161153  161155  161159  161161  161165  161171  161173  161179  161183  161185  161189  161195  161201  161203  161209  161213  161215  161221  161225  161231  161239  266669 

科目: 来源:不详 题型:解答题

已知函数f(x)=ax-lnx,g(x)=
lnx
x
,它们的定义域都是(0,e],其中e≈2.718,a∈R
( I)当a=1时,求函数f(x)的单调区间;
( II)当a=1时,对任意x1,x2∈(0,e],求证:f(x1)>g(x2)+
17
27

( III)令h(x)=f(x)-g(x)•x,问是否存在实数a使得h(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知f(x)=x3+3x2+a(a为常数)在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知f(x)=
1
3
ax3+
1
2
bx2
+cx+d的图象过原点,且在点(-1,f(-1))处的切线与x轴平行.对任意x∈R,都有x≤f′(x)≤
1
2
(x2+1)

(1)求函数y=f(x)在点(1,f(1))处切线的斜率;
(2)求f(x)的解析式;
(3)设g(x)=12f(x)-4x2-3x-3,h(x)=
m
x
+x•lnx,对任意x1x2∈[
1
2
,2]
,都有h(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在x∈[-
1
2
,1)
上的最大值为
3
8
,求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)在(1)的条件下,设F(x)=
f(x),x<1
g(x),x≥1
,对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数m与商品单价的降低值x(单位:元,0≤x<9)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润y表示成x的函数;
(2)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知x=1是函数f(x)=x3-ax(a为参数)的一个极值点.
(1)求a的值;
(2)求x∈[0,2]时,函数f(x)的最大值与最小值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

一出租车每小时耗油的费用与其车速的立方成正比,当车速为80km/h时,该车耗油的费用为8元/h,其他费用为12元/h.甲乙两地的公路里程为160km,在不考虑其他因素的前提下,为了使该车开往乙地的总费用最低,该车的车速应当确定为多少公里/小时?

查看答案和解析>>

科目: 来源:不详 题型:解答题

设函数f(x)=
1
2
x2ex

(1)求该函数的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:单选题

函数f(x)=2x2-
1
3
x3
在区间[0,6]上的最大值是(  )
A.
32
3
B.
16
3
C.12D.9

查看答案和解析>>

科目: 来源:不详 题型:填空题

当x∈(-1,3)时不等式的x2+ax-2<0恒成立,则a的取值范围是______.

查看答案和解析>>

同步练习册答案