相关习题
 0  161047  161055  161061  161065  161071  161073  161077  161083  161085  161091  161097  161101  161103  161107  161113  161115  161121  161125  161127  161131  161133  161137  161139  161141  161142  161143  161145  161146  161147  161149  161151  161155  161157  161161  161163  161167  161173  161175  161181  161185  161187  161191  161197  161203  161205  161211  161215  161217  161223  161227  161233  161241  266669 

科目: 来源:不详 题型:解答题

已知函数f(x)=2x+
2
x
+alnx,a∈R

(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围.
(2)记函数g(x)=x2[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=alnx-(1+a)x+
1
2
x2,a∈R
(Ⅰ)当0<a<1时,求函数f(x)的单调区间和极值;
(Ⅱ)当x∈[
1
e
,+∞)时f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

函数f(x)=
a
x
+lnx
,其中a为实常数.
(1)讨论f(x)的单调性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求实数a的取值范围;
(3)若a=0,设g(n)=1+
1
2
+
1
3
+…+
1
n
,h(n)=
1
23
+
2
32
+
3
43
+…+
n-1
n3
(n≥2,n∈N+).是否存在实常数b,既使g(n)-f(n)>b又使h(n)-f(n+1)<b对一切n≥2,n∈N+恒成立?若存在,试找出b的一个值,并证明;若不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

设函数f(x)=九x2+lnx.
(Ⅰ)当九=-1时,求函数y=f(x)的7象在点(1,f(1))处的切线方程;
(Ⅱ)已知九<0,若函数y=f(x)的7象总在直线y=-
1
2
的下方,求九的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+cx+d是R上的奇函数,且在x=1时取得极小值-
2
3

(1)求函数f(x)的解析式;
(2)对任意x1,x2∈[-1,1],证明:f(x1)-f(x2)≤
4
3

查看答案和解析>>

科目: 来源:不详 题型:填空题

若对一切x∈R,不等式4x+(a-1)2x+1≥0恒成立,则a的取值范围是______.

查看答案和解析>>

科目: 来源:不详 题型:填空题

若a1x≤sinx≤a2x对任意的x∈[0,
π
2
]
都成立,则a2-a1的最小值为______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某商品每件成本9元,售价为30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤21)的平方成正比.已知商品售价降低2元时,一星期多卖出24件.
(Ⅰ)将一个星期内该商品的销售利润表示成x的函数;
(Ⅱ)如何定价才能使一个星期该商品的销售利润最大?

查看答案和解析>>

科目: 来源:不详 题型:解答题

某化工企业生产某种产品,生产每件产品的成本为3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品能全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3).
(Ⅰ)求该企业正常生产一年的利润L(x)与出厂价x的函数关系式;
(Ⅱ)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立.则实数a的取值范围是______.

查看答案和解析>>

同步练习册答案