相关习题
 0  161051  161059  161065  161069  161075  161077  161081  161087  161089  161095  161101  161105  161107  161111  161117  161119  161125  161129  161131  161135  161137  161141  161143  161145  161146  161147  161149  161150  161151  161153  161155  161159  161161  161165  161167  161171  161177  161179  161185  161189  161191  161195  161201  161207  161209  161215  161219  161221  161227  161231  161237  161245  266669 

科目: 来源:不详 题型:解答题

设函数f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目: 来源:不详 题型:解答题

统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=
1
128000
x3-
3
80
x+8(0<x<120)

(1)当x=64千米/小时时,要行驶100千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知f(x)=-
1
2
ax2+x-ln(1+x)
,其中a>0.
(1)若x=3是函数f(x)的极值点,求a的值;
(2)求f(x)的单调区间;
(3)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:单选题

函数y=x3-x-x+1在闭区间[-1,1]上的最8值是(  )
A.
32
27
B.
26
27
C.0D.-
32
27

查看答案和解析>>

科目: 来源:不详 题型:解答题

定义在R上的函数f(x)=
1
3
ax3+bx2+cx+2
同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=[
1
3
x3-f(x)]•ex,求函数g(x)在[m,m+1]上的最小值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1)上的最大值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=eax-x,其中a≠0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f1(x)=
1
2
x2,f2(x)=alnx(其中a>0).
(Ⅰ)求函数f(x)=f1(x)•f2(x)的极值;
(Ⅱ)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(
1
e
,e)内有两个零点,求正实数a的取值范围;
(Ⅲ)求证:当x>0时,1nx+
3
4x2
-
1
ex
>0.(说明:e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=
lnx
a
-x

(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与X轴平行,求函数f(x)的单调区间;
(Ⅱ)若对一切正数x,都有f(x)≤-1恒成立,求a的取值集合.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=a(lnx-x)(a∈R).
(I)讨论函数f(x)的单调性;
(II)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,函数g(x)=x3+x2[
m
2
+f′(x)]
在区间(2,3)上总存在极值,求实数m的取值范围.

查看答案和解析>>

同步练习册答案