相关习题
 0  16445  16453  16459  16463  16469  16471  16475  16481  16483  16489  16495  16499  16501  16505  16511  16513  16519  16523  16525  16529  16531  16535  16537  16539  16540  16541  16543  16544  16545  16547  16549  16553  16555  16559  16561  16565  16571  16573  16579  16583  16585  16589  16595  16601  16603  16609  16613  16615  16621  16625  16631  16639  266669 

科目: 来源:不详 题型:解答题

已知函数f(x)=
1
2
ax2+2x(a≠0),g(x)=lnx

(Ⅰ)若h(x)=f(x)-g(x)存在单调增区间,求a的取值范围;
(Ⅱ)是否存在实数a>0,使得方程
g(x)
x
=f′(x)-(2a+1)
在区间(
1
e
,e)
内有且只有两个不相等的实数根?若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

设函数f(x)=px2+qx-
q
x
是奇函数,其中p,q是常数,且q≠0.
(Ⅰ)求P的值;
(Ⅱ)若q<0,求f(x-1)的单调区间;
(Ⅲ)求f(sinx+cosx)在x∈[0,
π
2
]上的最大值与最小值.(用q表示)

查看答案和解析>>

科目: 来源:不详 题型:解答题

设函数f(x)=x3+mx2+nx+p在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个实根x1,2,x2
(Ⅰ)求n的值;
(Ⅱ)试比较f(1)与2的大小,并说明理由;
(Ⅲ)求|x1-x2|的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=lnx-a(x-1),(a>0)
(1)求函数f(x)的单调区间和极值;
(2)若函数f(x)在(1,+∞)是单调减函数,求实数a的取值范围;
(3)在(2)的条件下,当n∈N+时,证明:(1+
1
2
)(1+
1
22
+)(1+
1
23
)…(1+
1
2n
)<e.其中(e≈2.718…即自然对数的底数)

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=ekx(k是不为零的实数,e为自然对数的底数).
(1)若曲线y=f(x)与y=x2有公共点,且在它们的某一公共点处有共同的切线,求k的值;
(2)若函数h(x)=f(x)(x2-2kx-2)在区间(k,
1
k
)
内单调递减,求此时k的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:填空题

函数f(x)=ex-x-1的单调递减区间为______.

查看答案和解析>>

科目: 来源: 题型:

(08年绵阳市诊断三理) (12分)某社区举办北京奥运知识宣传活动,现场的“抽卡有奖游戏”特别引人注目,游戏规则是:盒子中装有8张形状大小相同的精美卡片,卡片上分别印有“奥运福娃”或“奥运会徽”,要求4人中一组参加游戏,参加游戏的4人从盒子中轮流抽取卡片,一次抽2张,抽取后不放回,直到4人中一人一次抽到2张“奥运福娃” 卡才能得到奖并终止游戏。

(1)游戏开始之前,一位高中生问:盒子中有几张“奥运会徽” 卡?主持人说:若从盒中任抽2张卡片不都是“奥运会徽” 卡的概率为,请你回答有几张“奥运会徽” 卡呢?

(2)现有甲、乙、丙、丁4人参加游戏,约定甲、乙、丙、丁依次抽取。用表示4人中的某人获奖终止游戏时总共抽取卡片的次数,求的概率分布及的数学期望。

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=ax-
1
x
+b-(a+1)lnx,(a,b∈R),g(x)=-
2
e
x+
e
2

(Ⅰ)若函数f(x)在x=2处取得极小值0,求a,b的值;
(Ⅱ)在(Ⅰ)的条件下,求证:对任意x1x2∈[e,e2],总有f(x1)>g(x2);
(Ⅲ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目: 来源:不详 题型:单选题

若函数f(x)在定义域R内可导,f(1+x)=f(1-x),且当x∈(-∞,1)时,(x-1)f′(x)>0设a=f(0),b=f(
3
2
),c=f(3)
,则(  )
A.a<b<cB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

科目: 来源:不详 题型:单选题

函数y=
1
3
x3+ax
在区间[0,1]上是增函数,则a的取值范围为(  )
A.a>0B.a<0C.a≥0D.a≤0

查看答案和解析>>

同步练习册答案