相关习题
 0  165643  165651  165657  165661  165667  165669  165673  165679  165681  165687  165693  165697  165699  165703  165709  165711  165717  165721  165723  165727  165729  165733  165735  165737  165738  165739  165741  165742  165743  165745  165747  165751  165753  165757  165759  165763  165769  165771  165777  165781  165783  165787  165793  165799  165801  165807  165811  165813  165819  165823  165829  165837  266669 

科目: 来源:不详 题型:解答题

如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3) 求二面角B—FC—G的正切值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱
CD上的动点.
(I)试确定点F的位置,使得D1E⊥平面AB1F;
(II)当⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在五面体,ABCDF中,点O是矩形ABCD的对角线的交点,面ABF是等边三角形,棱EF=
(1)证明EO∥平面ABF;
(2)问为何值时,有OF⊥ABE,试证明你的结论.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知上的点.
(1)当
(2)当二面角的大小为的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F
为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值;
(Ⅲ)求点D到平面ACE的距离.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正
三角形,且平面PDC⊥底面ABCD,E为PC的中点。


 
        (I)求异面直线PA与DE所成的角;

        (II)求点D到面PAB的距离.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知平行六面体的底面ABCD是菱形,且,(1)证明:

(II)假定CD=2,,记面为α,面CBD为β,求二面角α -BD -β的平面角的余弦值;
(III)当的值为多少时,能使?请给出证明.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图直棱柱ABC-A1B1C1中AB=,AC=3,BC=,D是A1C的中点E是侧棱BB1上的一动点。
(1)当E是BB1的中点时,证明:DE//平面A1B1C1
(2)求的值
(3)在棱 BB1上是否存在点E,使二面角E-A1C-C是直二面角?若存在求的值,不存在则说明理由。

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
(Ⅰ)求证:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求点P到平面QBD的距离.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知四棱锥(如图)底面是边长为2的正方形.侧棱底面分别为的中点,
(Ⅰ)求证:平面⊥平面
(Ⅱ)直线与平面所成角的正弦值为,求PA的长;
(Ⅲ)在条件(Ⅱ)下,求二面角的余弦值。

查看答案和解析>>

同步练习册答案