相关习题
 0  165673  165681  165687  165691  165697  165699  165703  165709  165711  165717  165723  165727  165729  165733  165739  165741  165747  165751  165753  165757  165759  165763  165765  165767  165768  165769  165771  165772  165773  165775  165777  165781  165783  165787  165789  165793  165799  165801  165807  165811  165813  165817  165823  165829  165831  165837  165841  165843  165849  165853  165859  165867  266669 

科目: 来源:不详 题型:解答题

如图,直三棱柱ABCA1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,MN分别是A1B1A1A的中点.

(1)求的长;
(2)求cos<>的值;
(3)求证: A1BC1M.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,四棱锥中,底面

的中点。
(I)试在上确定一点,使得平面
   (II)点在满足(I)的条件下,求直线与平面所成角的正弦值。

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知四边形ABCD为直角梯形,ADBC,∠ABC=90°,PA⊥平面AC,且PA=AD=AB=1,BC=2
(1)求PC的长;
(2)求异面直线PCBD所成角的余弦值的大小;
(3)求证:二面角BPCD为直二面角. 

查看答案和解析>>

科目: 来源:不详 题型:解答题


如图,已知正三棱柱的底面边长是、E是、BC的中点,AE=DE
(1)求此正三棱柱的侧棱长;(2)正三棱柱表面积;

查看答案和解析>>

科目: 来源:不详 题型:解答题

正方体.ABCD- 的棱长为l,点F、H分别为为、A1C的中点.

(1)证明:∥平面AFC;.
(2)证明B1H平面AFC.

查看答案和解析>>

科目: 来源:不详 题型:解答题

直三棱柱中,
(1)求证:平面平面
(2)求三棱锥的体积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本题满分12分).如图:平面平面,是正方形,矩形,且,的中点。

(1)求证平面平面;(2)求四面体的体积。

查看答案和解析>>

科目: 来源:不详 题型:解答题

在四棱锥PABCD中,侧棱PA⊥底面ABCD,底面ABCD是矩形,问底面的边BC上是否存在点E.
(1)使∠PED=90°;
(2)使∠PED为锐角. 证明你的结论.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(13分)如图(2):PA⊥面ABCD,CD2AB,
∠DAB=90°,E为PC的中点.
(1)证明:BE//面PAD;
(2)若PA=AD,证明:BE⊥面PDC.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(13分)如图(3):四面体D—ABC中,DB⊥面ABC, ∠DAB="30°,∠BAC=45°," ∠ACB=90°.BC=.
(1)点A与面BCD的距离;  (2)AB与CD成的角的余弦值.

查看答案和解析>>

同步练习册答案