相关习题
 0  166437  166445  166451  166455  166461  166463  166467  166473  166475  166481  166487  166491  166493  166497  166503  166505  166511  166515  166517  166521  166523  166527  166529  166531  166532  166533  166535  166536  166537  166539  166541  166545  166547  166551  166553  166557  166563  166565  166571  166575  166577  166581  166587  166593  166595  166601  166605  166607  166613  166617  166623  166631  266669 

科目: 来源:不详 题型:单选题

(文科)已知平面平面是夹在间的两条线段,直线角,则线段的最小值是     (    )
A.        B        C       D 

查看答案和解析>>

科目: 来源:不详 题型:填空题

(理科)如图,是边长为的正方形,都与平面垂直,且,设平面与平面所成二面角为,则 ▲
(文科)如图,二面角的大小是60°,线段.

所成的角为30°.则与平面所成的角的正弦值是  

查看答案和解析>>

科目: 来源:不详 题型:填空题

(本小题满分12分)
如图,棱锥PABCD的底面ABCD是矩形,
PA⊥平面ABCDPA=AD=2,BD=.
(1)求点C到平面PBD的距离.

O

 
(2)在线段上是否存在一点,使与平面所成的角

的正弦值为,若存在,指出点的位置,若不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:填空题

(本小题满分12分)
已知平行六面体中
各条棱长均为,底面是正方形,且

(1)用表示及求
(2)求异面直线所成的角的余弦值。

查看答案和解析>>

科目: 来源:不详 题型:填空题

(本小题满分12分)
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中点.
(Ⅰ)求证:PO⊥平面ABCD
(Ⅱ)求异面直线PBCD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:填空题

用一个平面去截正方体。其截面是一个多边形,则这个多边形的边数最多是      

查看答案和解析>>

科目: 来源:不详 题型:解答题

(、(8分)如图,在底面是直角梯形的四棱锥S-ABCD中,


(1)求四棱锥S-ABCD的体积;
(2)求证:

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本小题满分13分)
如图,已知正三棱柱的底面正三角形的边长是2,D是的中点,直线与侧面所成的角是.

⑴求二面角的大小;
⑵求点到平面的距离.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本小题满分12分)
如图5,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.

(Ⅰ) 证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?
若能,请指出点N的位置,并加以证明;
若不能,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本小题满分13分)
如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.

(Ⅰ)求证:平面
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案