相关习题
 0  166584  166592  166598  166602  166608  166610  166614  166620  166622  166628  166634  166638  166640  166644  166650  166652  166658  166662  166664  166668  166670  166674  166676  166678  166679  166680  166682  166683  166684  166686  166688  166692  166694  166698  166700  166704  166710  166712  166718  166722  166724  166728  166734  166740  166742  166748  166752  166754  166760  166764  166770  166778  266669 

科目: 来源:不详 题型:解答题

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,,点M在线段EC上(除端点外)

(1)当点M为EC中点时,求证:平面
(2)若平面与平面ABF所成二面角为锐角,且该二面角的余弦值为时,求三棱锥的体积

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,四棱锥PABCD的底面ABCD为一直角梯形,其中BAADCDADCDAD=2ABPA⊥底面ABCDEPC的中点.
 
(1)求证:BE∥平面PAD
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

)如图所示,在三棱锥PABC中,ABBC,平面PAC⊥平面ABCPDAC于点DAD=1,CD=3,PD.
 
(1)证明:△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFGAD⊥平面DEFGBAACEDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求证:BE⊥平面DEFG
(2)求证:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求异面直线AB1与DD1所成角的余弦值;
(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在三棱柱ABC­A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求证:AA1⊥平面ABC;
(2)求二面角A1­BC1­B1的余弦值;
(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角A­BD­C为60°,如图(2).

(1)求证:AE⊥平面BDC;
(2)求直线AC与平面ABD所成角的余弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案