相关习题
 0  166913  166921  166927  166931  166937  166939  166943  166949  166951  166957  166963  166967  166969  166973  166979  166981  166987  166991  166993  166997  166999  167003  167005  167007  167008  167009  167011  167012  167013  167015  167017  167021  167023  167027  167029  167033  167039  167041  167047  167051  167053  167057  167063  167069  167071  167077  167081  167083  167089  167093  167099  167107  266669 

科目: 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥面ABCD,且PA=AB=4,E为PD中点.
(1)证明:PB平面AEC;
(2)证明:平面PCD⊥平面PAD;
(3)求二面角E-AC-D的正弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,四棱锥P-ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M为PC的中点.
(1)求证:BM平面PAD;
(2)在侧面PAD内找一点N,使MN⊥平面PBD;
(3)求直线PC与平面PBD所成角的正弦.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π
4
,PA⊥底面ABCD,PA=2,M为PA的中点,N为BC的中点.AF⊥CD于F,如图建立空间直角坐标系.
(Ⅰ)求出平面PCD的一个法向量并证明MN平面PCD;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是梯形,ADBC,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)求异面直线PC与AB所成角的余弦值;
(Ⅲ)在侧棱PA上是否存在一点E,使得平面CDE与平面ADC所成角的余弦值是
2
3
,若存在,求出AE的长;若不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,已知长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且CE=1.
(1)求证BE⊥B1C;
(2)求直线A1B与直线B1C所成角的正弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知四边形ABCD与CDEF均为正方形,平面ABCD⊥平面CDEF.
(Ⅰ)求证:ED⊥平面ABCD;
(Ⅱ)求二面角D-BE-C的大小.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是梯形,ADBC且∠ADC=60°,BC=2AD=4.
(1)求证:DC⊥PA;
(2)在PB上是否存在一点M(不包含端点P,B)使得二面角C-AM-B为直二面角,若存在求出PM的长,若不存在请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,PA=AB=BC=AC,E是PC的中点.
(1)求证:PD⊥平面ABE;
(2)求二面角A-PD-C的平面角的正弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为线段CD中点.
(1)求直线B1E与直线AD1所成的角的余弦值;
(2)若AB=2,求二面角A-B1E-
A_
1
的大小;
(3)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案