相关习题
 0  166915  166923  166929  166933  166939  166941  166945  166951  166953  166959  166965  166969  166971  166975  166981  166983  166989  166993  166995  166999  167001  167005  167007  167009  167010  167011  167013  167014  167015  167017  167019  167023  167025  167029  167031  167035  167041  167043  167049  167053  167055  167059  167065  167071  167073  167079  167083  167085  167091  167095  167101  167109  266669 

科目: 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=2
3
,∠ABC=
π
3

(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的正弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,F是PD的中点,E是线段AB上的点.
(Ⅰ)当E是AB的中点时,求证:AF平面PEC;
(Ⅱ)要使二面角P-EC-D的大小为45°,试确定E点的位置.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A-B1E-A1的大小为30°,求AB的长.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.
(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目: 来源:不详 题型:单选题

在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为(  )
A.
1
5
B.
2
5
C.
5
5
D.
2
5
5

查看答案和解析>>

科目: 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,E是AD的中点,则异面直线C1E与BC所成的角的余弦值是(  )
A.
10
5
B.
10
10
C.
1
3
D.
2
2
3

查看答案和解析>>

科目: 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段AB、BC上的点,且EB=FB=1.
( I)求二面角C-DE-C1的正切值;( II)求直线EC1与FD1所成的余弦值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图直角梯形OABC中,∠COA=∠AOB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分别以OC,OA,OS为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求
SC
OB
夹角的余弦值;
(Ⅱ)求OC与平面SBC夹角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,AC=BC=a,点P在边AB上,设
AP
PB
(λ>0),过点P作PEBC交AC于E,作PFAC交BC于F.沿PE将△APE翻折成△A′PE使平面A′PE⊥平面ABC;沿PE将△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求证:B′C平面A′PE;
(2)是否存在正实数λ,使得二面角C-A′B′-P的大小为90°?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=
6

(I)求证:AO⊥平面BCD;
(Ⅱ)求二面角A-BC-D的余弦值;
(Ⅲ)求O点到平面ACD的距离.

查看答案和解析>>

同步练习册答案