相关习题
 0  16717  16725  16731  16735  16741  16743  16747  16753  16755  16761  16767  16771  16773  16777  16783  16785  16791  16795  16797  16801  16803  16807  16809  16811  16812  16813  16815  16816  16817  16819  16821  16825  16827  16831  16833  16837  16843  16845  16851  16855  16857  16861  16867  16873  16875  16881  16885  16887  16893  16897  16903  16911  266669 

科目: 来源:宁波二模 题型:解答题

设函数f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函数f(x)的一个极值点,求实数a的值及f(x)的最大值;
(Ⅱ)求实数a的值,使得函数f(x)同时具备如下的两个性质:
①对于任意实数x1,x2∈(0,1)且x1≠x2
f(x1)+f(x2)
2
<f(
x1+x2
2
)
恒成立;
②对于任意实数x1,x2∈(1,+∞)且x1≠x2
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立.

查看答案和解析>>

科目: 来源:不详 题型:解答题

设数列a1,a2,…,an,…的前n项的和Sn与an的关系是Sn=-ban+1-
1
(1+b)n
,其中b是与n无关的常数,且b≠-1.
(1)求an和an-1的关系式;
(2)写出用n和b表示an的表达式;
(3)当0<b<1时,求极限
lim
n→∞
Sn

查看答案和解析>>

科目: 来源:乌鲁木齐一模 题型:解答题

已知函数f(x)=
lnx
a
-x

(I)若曲线y=f(x)在点(1,f(1))处的切线与X轴平行,求函数f(x)的单调区间;
(II)若对一切正数x,都有f(x)≤-1恒成立,求a的取值集合.

查看答案和解析>>

科目: 来源:不详 题型:填空题

若f'(3)=2,则
lim
x→1
f(3)-f(1+2x)
x-1
=______.

查看答案和解析>>

科目: 来源:不详 题型:单选题

直线y=kx+b与曲线y=ax2+2+lnx相切于点P(1,4),则b的值为(  )
A.3B.1C.-1D.-3

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知直线l:x-ny=0(n∈N*),圆M:(x+1)2+(y+1)2=1,抛物线φ:y=(x-1)2,又l与M交于点A、B,l与φ交于点C、D,求
lim
n→∞
|AB|2
|CD|2

查看答案和解析>>

科目: 来源:不详 题型:解答题

若数列{an}的首项为a1=1,且对任意n∈N*,an与an+1恰为方程x2-bnx+cn=0的两根,其中0<|c|<1,当
lim
n→∞
(b1+b2+…+bn)≤3,求c的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知数列{an}、{bn}都是无穷等差数列,其中a1=3,b1=2,b2是a2与a3的等差中项,且
lim
n→∞
an
bn
=
1
2
,求极限
lim
n→∞
1
a1b1
+
1
a2b2
+…+
1
anbn
)的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知数列{an}满足(n-1)an+1=(n+1)(an-1)且a2=6,设bn=an+n(n∈N*).
(1)求{bn}的通项公式;
(2)求
lim
n→∞
1
b2-2
+
1
b3-2
+
1
b4-2
+…+
1
bn-2
)的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

设数列a1,a2,…,an,…的前n项的和Sn与an的关系是Sn=kan+1,(其中k是与n无关的常数,且k≠1).
(1)试写出用n,k表示的an的表达式;
(2)若
lim
n→∞
sn
=1,求k的取值范围.

查看答案和解析>>

同步练习册答案