相关习题
 0  169069  169077  169083  169087  169093  169095  169099  169105  169107  169113  169119  169123  169125  169129  169135  169137  169143  169147  169149  169153  169155  169159  169161  169163  169164  169165  169167  169168  169169  169171  169173  169177  169179  169183  169185  169189  169195  169197  169203  169207  169209  169213  169219  169225  169227  169233  169237  169239  169245  169249  169255  169263  266669 

科目: 来源:不详 题型:单选题

设双曲线-=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若(λ,μ∈R),λμ=,则该双曲线的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源:不详 题型:填空题

(2014·武汉模拟)圆(x-a)2+y2=1与双曲线x2-y2=1的渐近线相切,则a的值是________.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(2013·上海高考)如图,已知双曲线C1-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.

(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.
(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.

查看答案和解析>>

科目: 来源:不详 题型:单选题

过点与抛物线有且只有一个交点的直线有(  )
A.4条    B.3条   C.2条  D.1条

查看答案和解析>>

科目: 来源:不详 题型:单选题

(2011•山东)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )
A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,一个底面半径为的圆柱被与其底面所成角为的平面所截,截面是一个椭圆,当时,这个椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知抛物线的焦点为,则________,
过点向其准线作垂线,记与抛物线的交点为,则_____.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.

(1)求椭圆C的标准方程;
(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案