相关习题
 0  169077  169085  169091  169095  169101  169103  169107  169113  169115  169121  169127  169131  169133  169137  169143  169145  169151  169155  169157  169161  169163  169167  169169  169171  169172  169173  169175  169176  169177  169179  169181  169185  169187  169191  169193  169197  169203  169205  169211  169215  169217  169221  169227  169233  169235  169241  169245  169247  169253  169257  169263  169271  266669 

科目: 来源:不详 题型:解答题

椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3.
(1)求椭圆E的方程;
(2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求·的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0),左、右两个焦点分别为F1,F2,上顶点A(0,b),△AF1F2为正三角形且周长为6.
(1)求椭圆C的标准方程及离心率;
(2)O为坐标原点,P是直线F1A上的一个动点,求|PF2|+|PO|的最小值,并求出此时点P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:填空题

以下几个命题中:其中真命题的序号为_________________(写出所有真命题的序号)
①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若则动点P的轨迹为椭圆;
③双曲线有相同的焦点;
④在平面内,到定点的距离与到定直线的距离相等的点的轨迹是抛物线.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的倍,其上一点到右焦点的最短距离为
(1)求椭圆的标准方程;
(2)若直线交椭圆两点,当时求直线的方程

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知点,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,则(    )
A.B.
C.D.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.

(1)若椭圆C经过两点,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求·的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..

查看答案和解析>>

科目: 来源:不详 题型:单选题

对于曲线=1,给出下面四个命题:
(1)曲线不可能表示椭圆;
(2)若曲线表示焦点在x轴上的椭圆,则1<
(3)若曲线表示双曲线,则<1或>4;
(4)当1<<4时曲线表示椭圆,其中正确的是(      )
A.(2)(3)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

同步练习册答案