相关习题
 0  169406  169414  169420  169424  169430  169432  169436  169442  169444  169450  169456  169460  169462  169466  169472  169474  169480  169484  169486  169490  169492  169496  169498  169500  169501  169502  169504  169505  169506  169508  169510  169514  169516  169520  169522  169526  169532  169534  169540  169544  169546  169550  169556  169562  169564  169570  169574  169576  169582  169586  169592  169600  266669 

科目: 来源:不详 题型:单选题

如果椭圆
x2
36
+
y2
9
=1
的弦被点(2,2)平分,那么这条弦所在的直线的方程是(  )
A.x+4y=0B.x+4y-10=0C.x+4y-6=0D.x-4y-10=0

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
C:的左右焦点为F1,F2,离心率为e,直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,且
AM
=
3
4
AB

(1)计算椭圆的离心率e
(2)若直线l向右平移一个单位后得到l′,l′被椭圆C截得的弦长为
5
4
,则求椭圆C的方程.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知中心在原点的双曲线C的离心率为
2
3
3
,一条准线方程为x=
3
2

(1)求双曲线C的标准方程
(2)若直线l:y=kx+
2
与双曲线C恒有两个不同的交点A和B,且
OA
OB
>2
(其中O为原点),求k的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,过F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点.当直线l与x轴垂直时,
|CD|
|AB|
=2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)求过点O,F1,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求
F2A
F2B
的最值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

设双曲线方程
x2
a2
-
y2
b2
=1(b>a>0)
的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为
3
4
c

(1)求双曲线的离心率;
(2)经过该双曲线的右焦点且斜率为2的直线m被双曲线截得的弦长为15,求双曲线的方程.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,点A,B关于y轴对称.一曲线E过C点,动点P在曲线E上运动,且保持|PA|+|PB|的值不变.
(1)求曲线E的方程;
(2)已知点S(0,-
3
),T(0,
3
)
,求∠SPT的最小值;
(3)若点F(1,
3
2
)
是曲线E上的一点,设M,N是曲线E上不同的两点,直线FM和FN的倾斜角互补,试判断直线MN的斜率是否为定值,如果是,求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:填空题

若直线y=kx+1与曲线x=
1-4y2
有两个不同的交点,则k的取值范围是______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),离心率为
2
2

(1)求椭圆的标准方程;
(2)设过点F且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,求点G的横坐标的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,⊙O:x2+y2=16,A(-2,0),B(2,0)为两定点,l是⊙O的一条动切线,若过A,B两点的抛物线以直线l为准线,则抛物线焦点所在的轨迹是(  )
A.双曲线B.椭圆C.抛物线D.圆

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,F1,F2是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的焦点,P为椭圆上的点,PF1⊥OX轴,且OP和椭圆的一条长轴顶点A和短轴顶点B的连线AB平行.
(1)求椭圆的离心率e
(2)若Q是椭圆上任意一点,证明∠F1QF2
π
2

(3)过F1与OP垂直的直线交椭圆于M,N,若△MF2N的面积为20
3
,求椭圆方程.

查看答案和解析>>

同步练习册答案