相关习题
 0  169424  169432  169438  169442  169448  169450  169454  169460  169462  169468  169474  169478  169480  169484  169490  169492  169498  169502  169504  169508  169510  169514  169516  169518  169519  169520  169522  169523  169524  169526  169528  169532  169534  169538  169540  169544  169550  169552  169558  169562  169564  169568  169574  169580  169582  169588  169592  169594  169600  169604  169610  169618  266669 

科目: 来源:不详 题型:解答题

如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b,b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆Cl的长轴三等分,且圆C2的面积为π.椭圆Cl的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B,直线EA、EB与椭圆C1的另一个交点分别是点P、M.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)(i)设PM的斜率为t,直线l斜率为K1,求
K1
t
的值;
(ii)求△EPM面积最大时直线l的方程.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,双曲线
x2
a2
-
y2
b2
=1
的两条渐近线为
l1,l2,过椭圆C的右焦点F作直线l,使l⊥l1,又l与l2交于P,设l与椭圆C的两个交点由上至下依次为A、B(如图).
(1)当l1与l2的夹角为60°,且△POF的面积为
3
2
时,求椭圆C的方程;
(2)当
FA
AP
时,求当λ取到最大值时椭圆的离心率.

查看答案和解析>>

科目: 来源:不详 题型:填空题

设F1、F2为椭圆
x2
9
+
y2
4
=1
的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则
|PF1|
|PF2|
的值为______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

设A,B分别为椭圆
x2
a2
+
y2
b2
=1(a,b>0)
的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知O为坐标原点,F是抛物线E:y2=4x的焦点.
(Ⅰ)过F作直线l交抛物线E于P,Q两点,求
OP
OQ
的值;
(Ⅱ)过点T(t,0)作两条互相垂直的直线分别交抛物线E于A,B,C,D四点,且M,N分别为线段AB,CD的中点,求△TMN的面积最小值.

查看答案和解析>>

科目: 来源:不详 题型:单选题

k为何值时,直线y=kx+2和椭圆2x2+3y2=6有两个交点(  )
A.-
6
3
<k<
6
3
B.k>
6
3
或k<-
6
3
C.-
6
3
≤k≤
6
3
D.k≥
6
3
或k≤-
6
3

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知F1,F2为椭圆x2+
y2
2
=1
上的两个焦点,A,B是过焦点F1的一条动弦,则△ABF2的面积的最大值为(  )
A.
2
2
B.
2
C.1D.2
2

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,设点F坐标为(1,0),点P在y轴上运动,点M在x轴运动上,其中
PM
PF
=0,若动点N满足条件
PN
=
MP

(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F(1,0)的直线l和l′分别与曲线E交于A、B两点和C、D两点,若l⊥l′,试求四边形ACBD的面积的最小值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(
2
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案