相关习题
 0  169820  169828  169834  169838  169844  169846  169850  169856  169858  169864  169870  169874  169876  169880  169886  169888  169894  169898  169900  169904  169906  169910  169912  169914  169915  169916  169918  169919  169920  169922  169924  169928  169930  169934  169936  169940  169946  169948  169954  169958  169960  169964  169970  169976  169978  169984  169988  169990  169996  170000  170006  170014  266669 

科目: 来源:不详 题型:填空题

将容量为50的样本数据,按从小到大的顺序分成4组如右表,则第3组的频率为____.(要求将结果化为最简分数)

查看答案和解析>>

科目: 来源:不详 题型:单选题

车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,数据如下:
零件数(个)
10
20
30
40
50
60
70
80
加工时间
62
68
75
81
89
95
102
108
设回归方程为,则点在直线的(  )
A.左上方        B.右上方        C.左下方        D.右下方

查看答案和解析>>

科目: 来源:不详 题型:单选题

利用独立性检验来考虑两个分类变量是否有关系时,通过查阅下表来确定“有关系”的可信度。如果,那么就有把握认为“有关系”的百分比为(    )






















A.25%     B.95%      C.5%      D.97.5%

查看答案和解析>>

科目: 来源:不详 题型:解答题

通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
 


总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
附: 

0.050
0.010
0.001

3.841
6.635
10.828
 
试考查大学生“爱好该项运动是否与性别有关”,若有关,请说明有多少把握。

查看答案和解析>>

科目: 来源:不详 题型:解答题

小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.

(1)根据图中的数据信息,写出众数
(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后
半小时内把报纸送达(每个时间点送达的可能性相等).
①求小明的父亲在上班离家前能收到报纸(称为事件)的概率;
②求小明的父亲周一至周五在上班离家前能收到报纸的天数的数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于小于为二等品,小于为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:
测试指标







3
7
20
40
20
10

5
15
35
35
7
3
 
根据上表统计得到甲、乙两人生产产品A为一等品、二等品、三等品的频率分别估计为他们生产产品A为一等品、二等品、三等品的概率.
(1)计算甲生产一件产品A,给工厂带来盈利不小于30元的概率;
(2)若甲一天能生产20件产品A,乙一天能生产15件产品A,估计甲乙两人一天生产的35件产品A中三等品的件数.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知方程y=bx+a是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(x10,y10)的回归方程,则“”是“(x0,y0)满足线性回归方程y=bx+a”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件

查看答案和解析>>

科目: 来源:不详 题型:解答题

空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:
PM2.5日均浓度
0~35
35~75
75~115
115~150
150~250
>250
空气质量级别
一级
二级
三级
四级
五级
六级
空气质量类别


轻度污染
中度污染
重度污染
严重污染
 

某市2013年3月8日—4月7日(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如下条形图:
(1)估计该城市一个月内空气质量类别为良的概率;
(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某校高三有四个班,某次数学测试后,学校随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.
(1)问各班被抽取的学生人数各为多少人?
(2)求平均成绩;
(3)在抽取的所有学生中,任取一名学生,求分数不低于90分的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某学校为了选拔学生参加“XX市中学生知识竞赛”,先在本校进行选拔测试(满分150分),若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.
(1)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;
(2)若通过学校选拔测试的学生将代表学校参加市知识竞赛,知识竞赛分为初赛和复赛,初赛中每人最多有5次答题机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.假设参赛者甲答对每一个题的概率都是,求甲在初赛中答题个数的分布列和数学期望.

查看答案和解析>>

同步练习册答案