相关习题
 0  169821  169829  169835  169839  169845  169847  169851  169857  169859  169865  169871  169875  169877  169881  169887  169889  169895  169899  169901  169905  169907  169911  169913  169915  169916  169917  169919  169920  169921  169923  169925  169929  169931  169935  169937  169941  169947  169949  169955  169959  169961  169965  169971  169977  169979  169985  169989  169991  169997  170001  170007  170015  266669 

科目: 来源:不详 题型:解答题

已知某地每单位面积菜地年平均使用氮肥量x(kg)与每单位面积蔬菜年平均产量y(t)之间的关系有如下数据:
年份
1985
1986
1987
1988
1989
1990
1991
1992
x(kg)
70
74
80
78
85
92
90
95
y(t)
5.1
6.0
6.8
7.8
9.0
10.2
10.0
12.0
 
年份
1993
1994
1995
1996
1997
1998
1999
 
x(kg)
92
108
115
123
130
138
145
 
y(t)
11.5
11.0
11.8
12.2
12.5
12.8
13.0
 
(1)求x与y之间的相关系数,并检验是否线性相关;
(2)若线性相关,求蔬菜产量y与使用氮肥量x之间的回归直线方程,并估计每单位面积施肥150 kg时,每单位面积蔬菜的年平均产量.
(已知数据:=101,≈10.113 3,=161 125,=1 628.55,=16 076.8)

查看答案和解析>>

科目: 来源:不详 题型:解答题

某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:
甲厂:
分组
[29.86,29.90)
[29.90,29.94)
[29.94,29.98)
[29.9830.02),
[30.02,30.06)
[30.06,30.10)
[30.10,30.14)
频数
12
63
86
182
92
61
4
乙厂:
分组
[29.86,29.90)
[29.90,29.94)
[29.94,29.98)
[29.9830.02),
[30.02,30.06)
[30.06,30.10)
[30.10,30.14)
频数
29
71
85
159
76
62
18
 
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?
 
甲厂
乙厂
合计
优质品
 
 
 
非优质品
 
 
 
合 计
 
 
 
附:
P(χ2≥x0)
0.05
0.01
x0
3.841
6.635
 

查看答案和解析>>

科目: 来源:不详 题型:解答题

某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x(x取整数)元与日销售量y台之间有如下关系:
x
35
40
45
50
y
56
41
28
11
(1)画出散点图,并判断y与x是否具有线性相关关系?
(2)求日销售量y对销售单价x的线性回归方程;
(3)设经营此商品的日销售利润为P元,根据(1)写出P关于x的函数关系式,并预测当销售单价x为多少元时,才能获得最大日销售利润.

查看答案和解析>>

科目: 来源:不详 题型:解答题

想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:
年龄/周岁
3
4
5
6
7
8
9
身高/cm
91.8
97.6
104.2
110.9
115.6
122.0
128.5
 
年龄/周岁
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.5
173.0
(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?
(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?
(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?
(4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,由此得到样本的重量频率分布直方图,如图

(1)求的值;
(2)根据样本数据,试估计盒子中小球重量的平均值;
(注:设样本数据第组的频率为,第组区间的中点值为,则样本数据的平均值为.)
(3)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班人,吴老师采用两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出的茎叶图如下:

记成绩不低于分者为“成绩优秀”.
(1)在乙班样本的个个体中,从不低于分的成绩中随机抽取个,记随机变量为抽到“成绩优秀”的个数,求的分布列及数学期望
(2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?
 
甲班(方式)
乙班(方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 

查看答案和解析>>

科目: 来源:不详 题型:解答题

某工厂有工人人,其中名工人参加过短期培训(称为类工人),另外名工人参加过长期培训(称为类工人).现用分层抽样的方法(按类、类分二层)从该工厂的工人中共抽查 名工人,调查他们的生产能力(此处的生产能力指一天加工的零件数).
(1)类工人和类工人中各抽查多少工人?
(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.
表1
生产能力分组





人数





表2
生产能力分组




人数





①求,再完成下列频率分布直方图;
②分别估计类工人和类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组
中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目: 来源:不详 题型:单选题

登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:
气温x(°C)
18
13
10
-1
山高y(km)
24
34
38
64
由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为(  )
A.-10           B.-8         C.-6          D.-6

查看答案和解析>>

科目: 来源:不详 题型:解答题

某种水果的单个质量在500g以上视为特等品.随机抽取1000个该水果,结果有50个特等品.将这50个水果的质量数据分组,得到下边的频率分布表.

(1)估计该水果的质量不少于560g的概率;
(2)若在某批水果的检测中,发现有15个特等品,据此估计该批水果中没有达到特等品的个数.

查看答案和解析>>

科目: 来源:不详 题型:填空题

为研究学生物理成绩与数学成绩是否相关,某中学老师将一次考试中五名学生的数学、物理成绩记录如下表所示:

根据上表提供的数据,经检验物理成绩与数学成绩呈线性相关,且得到y关于x的线性回归方程,那么表中t的值为       .

查看答案和解析>>

同步练习册答案