相关习题
 0  169947  169955  169961  169965  169971  169973  169977  169983  169985  169991  169997  170001  170003  170007  170013  170015  170021  170025  170027  170031  170033  170037  170039  170041  170042  170043  170045  170046  170047  170049  170051  170055  170057  170061  170063  170067  170073  170075  170081  170085  170087  170091  170097  170103  170105  170111  170115  170117  170123  170127  170133  170141  266669 

科目: 来源:不详 题型:解答题

电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名。右图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性。
(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
 
非体育迷
体育迷
合计

 
 
 

 
 
 
合计
 
 
 
(Ⅱ)将日均收看该体育项目不低于50 分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。

查看答案和解析>>

科目: 来源:不详 题型:解答题

某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
分数段(分)
[50,70)
[70,90)
[90,110)
[110,130)
[130,150)
总计
频数
 
 
 
b
 
 
频率
a
0.25
 
 
 
 

(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩在[100,130)范围内的学生中随机选4人,
设其中成绩在[100,110)内的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源:不详 题型:填空题

某种机器的使用年限和所支出的维修费用(万元)有下表的统计资料:

2
3
4
5
6

2.2
3.8
5.5
6.5
7.0
根据上表可得回归方程,据此模型估计,该种机器使用年限为10年时
维修费用约         万元(结果保留两位小数).

查看答案和解析>>

科目: 来源:不详 题型:单选题

某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175cm,但有一名运动员的身高记录不清楚,其末位数记为,那么的值为(    )
A.1B.2 C.3D.4

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知随机变量的值如下表所示,如果线性相关且回归直线方程为,则实数(   )
A.B.C.D.

查看答案和解析>>

科目: 来源:不详 题型:解答题

为了解今年某校高三毕业班准备报考飞行员学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为,其中第二小组的频数为12.

(1)求该校报考飞行员的总人数;
(2)以这所学校的样本来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知数据是上海普通职工个人的年收入,设个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是 (      ) 
A.年收入平均数大大增加,中位数一定变大,方差可能不变
B.年收入平均数大大增加,中位数可能不变,方差变大
C.年收入平均数大大增加,中位数可能不变,方差也不变
D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目: 来源:不详 题型:填空题

某篮球学校的甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图.则罚球命中率较高的是           .

查看答案和解析>>

科目: 来源:不详 题型:解答题

某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
日 期
4月1日
4月7日
4月15日
4月21日
4月30日
温差
10
11
13
12
8
发芽数
23
25
30
26
16
(Ⅰ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅰ)中所得的线性回归方程是否可靠?
(参考公式:
(参考数据:

查看答案和解析>>

科目: 来源:不详 题型:解答题

某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(Ⅰ)求出第4组的频率,并补全频率分布直方图;
(Ⅱ)根据样本频率分布直方图估计样本的中位数;
(Ⅲ)如果用分层抽样的方法从“优秀”和“良好” 的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?

查看答案和解析>>

同步练习册答案