相关习题
 0  170185  170193  170199  170203  170209  170211  170215  170221  170223  170229  170235  170239  170241  170245  170251  170253  170259  170263  170265  170269  170271  170275  170277  170279  170280  170281  170283  170284  170285  170287  170289  170293  170295  170299  170301  170305  170311  170313  170319  170323  170325  170329  170335  170341  170343  170349  170353  170355  170361  170365  170371  170379  266669 

科目: 来源:不详 题型:解答题

甲乙两人各有一个箱子,甲的箱子里面放有个红球,个白球(,且);乙的箱子里面放有2个红球,1个白球,1个黄球.现在甲从自己的箱子里任取2个球,乙从自己的箱子里任取1个球.若取出的3个球颜色都不相同,则甲获胜.
(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大?并求甲获胜的概率的最大值.
(2) 当甲获胜的概率取得最大值时,求取出的3个球中红球个数的分布列.

查看答案和解析>>

科目: 来源:不详 题型:单选题

将高一(6)班52名学生分成A,B两组参加学校组织的义务植树活动,A组种植150棵大叶榕树苗,B组种植200棵红枫树苗.假定A,B两组同时开始种植.每名学生种植一棵大叶榕树苗用时小时,种植一棵枫树苗用时小时.完成这次植树任务需要最短时间为(  )
A. B.C.D.

查看答案和解析>>

科目: 来源:不详 题型:解答题

甲、乙两人在罚球线互不影响地投球,命中的概率分别为,投中得1分,投不中得0分.
(1)甲、乙两人在罚球线各投球一次,求两人得分之和的数学期望;
(2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图;现有一迷失方向的小青蛙在3处,它每跳动一次可以等机会地进入相邻的任意一格(如若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入l,2,4,5处),则它在第三次跳动后, 进入5处的概率是
A.B.
C.D.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知, 若, 则=(  )
A.0.2B.0.3 C.0.7D.0.8

查看答案和解析>>

科目: 来源:不详 题型:解答题

某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名, 以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎, 小数点后的一位数字为叶):

(1) 指出这组数据的众数和中位数;
(2) 若幸福度不低于9.5分, 则称该人的幸福度为“极幸福”.求从这16人中随机选取3人, 至多有1人是“极幸福”的概率;
(3) 以这16人的样本数据来估计整个社区的总体数据, 若从该社区(人数很多)任选3人, 记表示抽到“极幸福”的人数, 求的分布列及数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题


某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.
(1)求甲中奖且乙、丙都没有中奖的概率;
(2)求中奖人数ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目: 来源:不详 题型:解答题

盒中装有5个产品,其中3个一等品,2个二等品,从中不放回地取产品,每次1个,求:
(1)取两次,两次都取得一等品的概率;
(2)取两次,第二次取得一等品的概率;
(3)取三次,第三次才取得一等品的概率;
(4)取两次,已知第二次取得一等品,求第一次取得是二等品的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:
登记所需时间(分)
1
2
3
4
5
频率
0.1
0.4
0.3
0.1
0.1
从第—个车主开始预约登记时计时(用频率估计概率),
(l)估计第三个车主恰好等待4分钟开始登记的概率:
(2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源:不详 题型:单选题

有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为(     )
A.0.72B.0.89C.0.8D.0.76

查看答案和解析>>

同步练习册答案