相关习题
 0  170268  170276  170282  170286  170292  170294  170298  170304  170306  170312  170318  170322  170324  170328  170334  170336  170342  170346  170348  170352  170354  170358  170360  170362  170363  170364  170366  170367  170368  170370  170372  170376  170378  170382  170384  170388  170394  170396  170402  170406  170408  170412  170418  170424  170426  170432  170436  170438  170444  170448  170454  170462  266669 

科目: 来源:不详 题型:解答题

(本小题满分12分)
四枚不同的金属纪念币,投掷时,A、B两枚正面向上的概率为分别为,另两枚C、D正面向上的概率分别为.这四枚纪念币同时投掷一次,设表示出现正面向上的枚数。
(1)若A、B出现一正一反与C、D出现两正的概率相等,求的值;
(2)求的分布列及数学期望(用表示);
(3)若有2枚纪念币出现正面向上的概率最大,求的取值范围。

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本小题12分)某校设计了一个实验学科的实验考察方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。规定:至少正确完成其中2题的便可通过考察,已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响。求:
(1)分别写出甲、乙两个考生正确分析完成题数的概率分布列;
(2)分析哪个考生通过考察的概率较大?

查看答案和解析>>

科目: 来源:不详 题型:单选题

停车场有3个并排的车位,分别停放着“奔驰”,“捷达”,“桑塔纳”轿车各一辆,则“捷达”停在“桑塔纳”右边的概率和“奔驰”停在最左边的概率分别是
A.B.C.D.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本小题满分12分)
甲、乙、丙三人玩游戏,规定每次在写有数字1,2,3,4,5,6的6张卡片中随机抽取一张,若数字为1或2或3,则甲得1分;若数字为4或5,则乙得1分;若数字为6,则丙得1分.一共抽取3次,得2分或3分者获胜.
(Ⅰ)求乙获胜的概率;
(Ⅱ)记为甲得的分数,求随机变量的概率分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数=
(1)若-2(a,b∈Z),求等式>0的解集为R的概率;
(2)若,求方程=0两根都为负数的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某高中地处县城,学校规定家到学校的路程在
以内的学生可以走读,因交通便利,所以走读生人数很多,
该校学生会先后次对走读生的午休情况作了统计,得到
如下资料:
①若把家到学校的距离分为五个区间:,则调查数据表明午休的走读生分布在各个区间内的频率相对稳定,得到了如右图所示的频率分布直方图;
②走读生是否午休与下午开始上课的时间有着密切的关系. 下表是根据次调查数据得到的下午开始上课时间与平均每天午休的走读生人数的统计表.
下午开始上课时间





平均每天午休人数





(Ⅰ)若随机地调查一位午休的走读生,其家到学校的路程(单位:里)在的概率是多少?
(Ⅱ)如果把下午开始上课时间作为横坐标,然后上课时间每推迟分钟,横坐标增加2,并以平均每天午休人数作为纵坐标,试列出的统计表,并根据表中的数据求平均每天午休人数与上课时间之间的线性回归方程
(Ⅲ)预测当下午上课时间推迟到时,家距学校的路程在4里路以下的走读生中约有多少人午休?
(注:线性回归直线方程系数公式

查看答案和解析>>

科目: 来源:不详 题型:填空题

在10个球中有6个红球和4个白球(各不相同但大小相等),依次不放回地摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率是           

查看答案和解析>>

科目: 来源:不详 题型:解答题

设在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片,标号分别记为,设随机变量
(1)写出的可能取值,并求随机变量的最大值;
(2)求事件“取得最大值”的概率;
(3)求的分布列和数学期望与方差.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本题满分12分)在某次射击比赛中共有5名选手,出场时甲、乙、丙三人不能相邻。求(1)共有多少种不同的出场顺序?
(2)若甲、乙、丙三人每次射击命中目标的概率都为0.6,求三人各射击一次至少有一      
人命中目标的概率。
(3)若甲、乙、丙三人每次射击命中目标的概率分别为0.7,0.6,0.5,求三人各射击一
次至少有两人命中目标的概率。

查看答案和解析>>

科目: 来源:不详 题型:解答题

某校设计了一个实验学科的实验考查方案:考生从道备选题中一次性随机抽取题,按照题目要 求独立完成全部实验操作.规定:至少正确完成其中题的便可通过.已知道备选题中考生甲有题能正确完成,题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)求考生甲通过实验考查的概率;
(2)求考生乙通过实验考查的概率
(3)求甲、乙两考生至少有一人通过实验考查的概率.

查看答案和解析>>

同步练习册答案