相关习题
 0  16970  16978  16984  16988  16994  16996  17000  17006  17008  17014  17020  17024  17026  17030  17036  17038  17044  17048  17050  17054  17056  17060  17062  17064  17065  17066  17068  17069  17070  17072  17074  17078  17080  17084  17086  17090  17096  17098  17104  17108  17110  17114  17120  17126  17128  17134  17138  17140  17146  17150  17156  17164  266669 

科目: 来源:期末题 题型:解答题

如图,把边长为40cm的正方形铁皮的四角边去边长为xcm的四个相同的正方形,然后折成一个高度为xcm的无盖的长方体的盒子,要求长方体的高度与底面边长的比值不超过常数k(k>0),问x取何值时,盒子的容积最大,最大容积是多少?

查看答案和解析>>

科目: 来源:月考题 题型:解答题

某乡镇所属A村、B村、C村位于一个边长为a公里的正三角形的三顶点上,乡镇在对外经济改革开放政策中已获得一外资项目,准备在位于∠BAC的角平分线上的选址E处(记∠EBD=θ),修建一农副产品加工厂,要求使得E到三村的中敦f(θ)尽可能的小.
(1)试求出f(θ)关于a的函数关系式;
(2)间θ为何值时,f(θ)最小?试述理由.

查看答案和解析>>

科目: 来源:期末题 题型:填空题

已知函数f(x)=x2﹣cosx,x∈[﹣  ]的值域是(    ).

查看答案和解析>>

科目: 来源:月考题 题型:解答题

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的r.

查看答案和解析>>

科目: 来源:月考题 题型:解答题

设函数设函数f(x)定义在(0,+∞)上,f(1)=0,导函数,g(x)=f(x)+f'(x).
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与的大小关系;
(3)是否存在x0>0,使得对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知函数f(x)=x3+ax2+bx+c,点P(1,f(1))在函数y=f(x)的图象上,过P点的切线方程为y=3x+1.
(1)若y=f(x)在x=﹣2时有极值,求f(x)的解析式;
(2)在(1)的条件下是否存在实数m,使得不等式f(x)≥m在区间[﹣2,1]上恒成立,若存在,试求出m的最大值,若不存在,试说明理由.

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距。
(1)用a和n表示f(n);
(2)求对所有n都有成立的a的最小值;
(3)当0<a<1时,比较的大小,并说明理由

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知f(x)=ax﹣1nx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.
(Ⅰ)当a=1时,研究f(x)的单调性与极值;
(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>g(x)+
(Ⅲ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源:期末题 题型:填空题

已知函数f(x)= (a∈R),若对于任意的x∈N*,f(x)≥3恒成立,则a的取值范围是(    ).

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知函数f(x)=的图象过点(﹣1,2),且在点(﹣1,f(
﹣1))处的切线与直线x﹣5y+1=0垂直.
(1)求实数b,c的值;
(2)求f(x)在[﹣1,e](e为自然对数的底数)上的最大值;
(3)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

同步练习册答案