相关习题
 0  16971  16979  16985  16989  16995  16997  17001  17007  17009  17015  17021  17025  17027  17031  17037  17039  17045  17049  17051  17055  17057  17061  17063  17065  17066  17067  17069  17070  17071  17073  17075  17079  17081  17085  17087  17091  17097  17099  17105  17109  17111  17115  17121  17127  17129  17135  17139  17141  17147  17151  17157  17165  266669 

科目: 来源:月考题 题型:解答题

定义函数fn(x)=(1+x)n﹣1,x>﹣2,x∈N*.
(1)求证:fn(x)≥nx;
(2)是否存在区间[a,0](a<0),使函数h(x)=f3(x)﹣f2(x)在区间[a,0]上的值域为[ka,0],若存在,求出最小的k值及相应的区间[a,0],若不存在,说明理由.

查看答案和解析>>

科目: 来源:月考题 题型:解答题

如图,在半径为30cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上.
(1)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积;
(2)若将所截得的矩形铝皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形形罐子体积最大?并求最大面积.

查看答案和解析>>

科目: 来源:月考题 题型:解答题

已知函数
(1)当时,讨论f(x)的单调性;
(2)设g(x)=x2﹣2bx+4,当,若对任意∈(0,2),存在x2∈[1,2],使f()+g(x2)≤0,求实数b的取值范围.

查看答案和解析>>

科目: 来源:月考题 题型:解答题

已知函数f(x)=x2﹣ax﹣aln(x﹣1)(a∈R)
(1)当a=1时,求函数f(x)的最值;
(2)求函数f(x)的单调区间;
(3)试说明是否存在实数a(a≥1)使y=f(x)的图象与无公共点.

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知函数.(a为常数,a>0)
(Ⅰ)若是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在 ,使不等式f(x0)>m(1﹣a2)成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源:月考题 题型:解答题

己知f(x)=Inx﹣ax2﹣bx.
(Ⅰ)若a=﹣1,函数f(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)当a=1,b=﹣1时,证明函数f(x)只有一个零点;
(Ⅲ)f(x)的图象与x轴交于A(x1,0),B(x2,0),两点,AB中点为C(x0,0),求证:f'(x0)<0.

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)

查看答案和解析>>

科目: 来源:江苏省月考题 题型:解答题

函数的定义域为(0,1](a为实数).
(Ⅰ)当a=﹣1时,求函数y=f(x)的值域;
(Ⅱ)若函数y=f(x)在定义域上是减函数,求a的取值范围;
(Ⅲ)求函数y=f(x)在x∈(0,1]上的最大值及最小值,并求出函数取最值时x的值

查看答案和解析>>

科目: 来源:期末题 题型:解答题

设函数f(x)=x2+bln(x+1).
(I)若对定义域内的任意x,都有f(x)≥f(1)成立,求实数b的值;
(II)若函数f(x)的定义域上是单调函数,求实数b的取值范围;
(III)若b=﹣1,证明对任意的正整数n,不等式成立.

查看答案和解析>>

同步练习册答案