相关习题
 0  16975  16983  16989  16993  16999  17001  17005  17011  17013  17019  17025  17029  17031  17035  17041  17043  17049  17053  17055  17059  17061  17065  17067  17069  17070  17071  17073  17074  17075  17077  17079  17083  17085  17089  17091  17095  17101  17103  17109  17113  17115  17119  17125  17131  17133  17139  17143  17145  17151  17155  17161  17169  266669 

科目: 来源:模拟题 题型:解答题

已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)满足:(1)当0<x≤10时销售收入与生产服装的平方成一次关系,x=3千件时销售收入为10.5万元;x=9千件时销售收入为8.1万元.(2)当x>10时销售收入与生产服装的关系式为
(1)写出年利润W(万元)关于年出品x(千件)的函数解析式;
(2)年产量为多少千件时,该公式在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目: 来源:模拟题 题型:解答题

已知函数
(I)求函数f(x)的单调区间;
(Ⅱ)若对任意x1∈(0,2),总存在x2∈[1,2]使f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目: 来源:模拟题 题型:解答题

已知f(x)=ln(x+1).
(1)若,求g(x)在[0,2]上的最大值与最小值;
(2)当x>0时,求证
(3)当n∈N+且n≥2时,求证:

查看答案和解析>>

科目: 来源:月考题 题型:解答题

已知函数
(1)若关于x的方程x2﹣tx﹣3=0的两实数为a,b(a<b),试判断函数f(x)在区间(a,b)上的单调性,并说明理由;
(2)若函数f(x)的图象在x=﹣1处的切线斜率为,求当x>0时,f(x)的最大值.

查看答案和解析>>

科目: 来源:同步题 题型:解答题

将如图所示的边长为a的等边三角形铁片,剪去三个四边形,做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为x,容积为V(x)。
(1)写出函数V(x)的解析式,并求出函数的定义域;
(2)求当x为多少时,容器的容积最大?并求出最大容积。

查看答案和解析>>

科目: 来源:江西省模拟题 题型:解答题

已知函数f(x)=x2+2x+alnx(a∈R),
(1)当a=-4时,求f(x)的最小值;
(2)若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围;
(3)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源:0103 模拟题 题型:解答题

已知A﹑B﹑C是直线上的三点,向量满足
(Ⅰ)求函数y=f(x)的表达式;
(Ⅱ)若x>0, 证明:f(x)>
(Ⅲ)当时,x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围。

查看答案和解析>>

科目: 来源:新疆自治区月考题 题型:解答题

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:
C(x)=,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目: 来源:月考题 题型:解答题

某园林公司计划在一块以O为圆心,R(R为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形CMDC区域用于观赏样板地,△OCD区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设∠COD=θ(单位:弧度),用θ表示弓形CMDC的面积S=f(θ);
(2)园林公司应该怎样规划这块土地,才能使总利润最大?并求相对应的θ.(参考公式:扇形面积公式,l表示扇形的弧长)

查看答案和解析>>

科目: 来源:月考题 题型:解答题

已知函数f(x)=(x2﹣3x+3)ex,设t>﹣2,f(﹣2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;
(2)试判断m,n的大小并说明理由;
(3)求证:对于任意的t>﹣2,总存在x0(﹣2,t),满足=,并确定这样的x0的个数.

查看答案和解析>>

同步练习册答案