相关习题
 0  16985  16993  16999  17003  17009  17011  17015  17021  17023  17029  17035  17039  17041  17045  17051  17053  17059  17063  17065  17069  17071  17075  17077  17079  17080  17081  17083  17084  17085  17087  17089  17093  17095  17099  17101  17105  17111  17113  17119  17123  17125  17129  17135  17141  17143  17149  17153  17155  17161  17165  17171  17179  266669 

科目: 来源:河北省模拟题 题型:解答题

已知函数fx)=ax+lnx,其中a为常数,设e为自然对数的底数.
(Ⅰ) 当a=-1时,求fx)的最大值;
(Ⅱ) 若fx)在区间(0,e]上的最大值为-3,求a的值;
(Ⅲ)  当a=-1 时,试推断方是否有实数解.

查看答案和解析>>

科目: 来源:广东省模拟题 题型:解答题

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目: 来源:广东省模拟题 题型:单选题

已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是
[     ]
A.﹣37  
B.﹣29  
C.﹣5  
D.以上都不对

查看答案和解析>>

科目: 来源:广东省模拟题 题型:解答题

有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2>V1

查看答案和解析>>

科目: 来源:北京期中题 题型:解答题

设函数f(x)=2x3﹣12x+c是定义在R上的奇函数.
(Ⅰ)求c的值及函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.

查看答案和解析>>

科目: 来源:河南省模拟题 题型:解答题

某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格.销售量可以增加,且每星期多卖出的商品件数与商品单价的降低销x(单位:元,0≤x≤30)的平方成正比.已知商品单价降低2元时,一星期多卖出24件.
(Ⅰ)将一个星期的商品销售利润表示成x的函数;
(Ⅱ)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

科目: 来源:河南省模拟题 题型:解答题

已知函数f(x)=﹣x2+ax﹣lnx(a∈R).
(1)当a=3时,求函数f(x)在上的最大值;
(2)当函数f(x)在单调时,求a的取值范围.

查看答案和解析>>

科目: 来源:北京期中题 题型:解答题

已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m﹣2f′(1),m∈R,且函数f(x)的图象过点(0,-2).
(1)求函数y=f(x)的表达式;
(2)设,若g(x)>0在定义域内恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源:吉林省模拟题 题型:解答题

已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0.
设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(1)用a表示b,并求b的最大值;
(2)求F(x)=f(x)﹣g(x)的极值

查看答案和解析>>

科目: 来源:广东省模拟题 题型:解答题

如图,已知M是函数y=4﹣x2(1<x<2)的图象C上一点,过M点作曲线C的切线与x轴、y轴分别交于点A,B,O是坐标原点,求△AOB面积的最小值.

查看答案和解析>>

同步练习册答案