相关习题
 0  171132  171140  171146  171150  171156  171158  171162  171168  171170  171176  171182  171186  171188  171192  171198  171200  171206  171210  171212  171216  171218  171222  171224  171226  171227  171228  171230  171231  171232  171234  171236  171240  171242  171246  171248  171252  171258  171260  171266  171270  171272  171276  171282  171288  171290  171296  171300  171302  171308  171312  171318  171326  266669 

科目: 来源:不详 题型:解答题

德阳中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,
课    程
初等代数
初等几何
初等数论
微积分初步
合格的概率




(1)求甲同学取得参加数学竞赛复赛的资格的概率;
(2)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列及期望

查看答案和解析>>

科目: 来源:不详 题型:解答题

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量(件)
1≤n≤3
4≤n≤6
7≤n≤9
10≤n≤12
n≥13
顾客数(人)

20
10
5

结算时间(分钟/人)
0.5
1
1.5
2
2.5
已知这50位顾客中一次购物量少于10件的顾客占80%.
(1)确定的值;
(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;
(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在两个不同的口袋中,各装有大小、形状完全相同的1个红球、2个黄球.现分别从每一个口袋中各任取2个球,设随机变量为取得红球的个数.
(Ⅰ)求的分布列;
(Ⅱ)求的数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

将编号为1,2,3,4的四个小球,分别放入编号为1,2,3,4的四个盒子,每个盒子中有且仅有一个小球.若小球的编号与盒子的编号相同,得1分,否则得0分.记为四个小球得分总和.
(1)求时的概率;
(2)求的概率分布及数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

现有A,B两球队进行友谊比赛,设A队在每局比赛中获胜的概率都是
(Ⅰ)若比赛6局,求A队至多获胜4局的概率;
(Ⅱ)若采用“五局三胜”制,求比赛局数ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

为了了解某班的男女生学习体育的情况,按照分层抽样分别抽取了10名男生和5名女生作为样本,他们期末体育成绩的茎叶图如图所示,其中茎为十位数,叶为个位数。

(Ⅰ)若该班男女生平均分数相等,求x的值;
(Ⅱ)若规定85分以上为优秀,在该10名男生中随机抽取2名,优秀的人数记为,求的分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

其市有小型超市72个,中型超市24个,大型超市12个,现采用分层抽样方法抽取9个超市对其销售商品质量进行调查.
(I)求应从小型、中型、大型超市分别抽取的个数;
(II)若从抽取的9个超市中随机抽取3个做进一步跟踪分析,记随机变量X为抽取的小型超市的个数,求随机变量X的分布列及数学期望E(X) .

查看答案和解析>>

科目: 来源:不详 题型:解答题

现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(I)求该射手恰好命中两次的概率;
(II)求该射手的总得分的分布列及数学期望;

查看答案和解析>>

科目: 来源:不详 题型:解答题

一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为,记.
(Ⅰ)求取最大值的概率;
(Ⅱ)求的分布列及数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率.

查看答案和解析>>

同步练习册答案