相关习题
 0  171225  171233  171239  171243  171249  171251  171255  171261  171263  171269  171275  171279  171281  171285  171291  171293  171299  171303  171305  171309  171311  171315  171317  171319  171320  171321  171323  171324  171325  171327  171329  171333  171335  171339  171341  171345  171351  171353  171359  171363  171365  171369  171375  171381  171383  171389  171393  171395  171401  171405  171411  171419  266669 

科目: 来源:不详 题型:解答题

(本题满分12分)某年级的10名班长中有8名女生,现从中选派5人参加友好学校访谈活动.用X表示选派的女班长人数.
(1)求有男班长参加的概率;(2)求X的分布列和期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本小题满分12分)
全球金融危机,波及中国股市,甲、乙、丙、丁四人打算趁目前股市低迷之际“抄底”,若四人商定在圈定的6只股票中各自随机购买一只(假定购买时每支股票的基本情况完全相同).
(1)求甲、乙、丙、丁四人恰好买到同一只股票的概率;
(2)求甲、乙、丙、丁四人中至多有两人买到同一只股票的概率;
(3)由于中国政府采取了积极的应对措施,股市渐趋“回暖”.若某人今天按上一交易日的收盘价20元/股,买入某只股票1000股,且预计今天收盘时,该只股票比上一交易日的收盘价上涨10%(涨停)的概率为0.6.持平的概率为0.2,否则将下跌10%(跌停),求此人今天获利的数学期望(不考虑佣金、印花税等交易费用).

查看答案和解析>>

科目: 来源:不详 题型:解答题

某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.
(Ⅰ)求此公司决定对该项目投资的概率;
(Ⅱ)记投票结果中“中立”票的张数为随机变量,求的分布列及数学期望E

查看答案和解析>>

科目: 来源:不详 题型:解答题

在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.
求:(1)最多取两次就结束的概率;
(2)整个过程中恰好取到2个白球的概率;
(3)取球次数的分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分 . 现从盒内任取3个球.
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知暗箱中开始有3个红球,2个白裘。现每次从暗箱中取出一个球后,再将此球以及与它同色的5个球(共6个球)一起放回箱中。
(1)求第二次取出红球的概率;
(2)求第三次取出白球的概率;
(3)设取出白球得5分,取出红球得8分,求连续取球3次得分的期望值。

查看答案和解析>>

科目: 来源:不详 题型:解答题

一纸箱中装有大小相等,但已编有不同号码的白色和黄色乒乓球,其中白色乒乓球有6个,黄色乒乓球有2个。
(Ⅰ)从中任取2个乒乓球,求恰好取得1个黄色乒乓球的概率;
(Ⅱ)每次不放回地抽取一个乒乓球,求第一次取得白色乒乓球时已取出的黄色乒乓球个数ξ的分布列及数学期望Eξ。

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本小题满分12分)
购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为
(Ⅰ)求一投保人在一年度内出险的概率
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本题14分)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本小题满分14分)

从参加高三年级期中考试的学生中随机抽出40名学生,将其数学成绩(均为整数)分成六组[40,50,[50,60,…[90,100]后得到如下频率分布直方图.
(Ⅰ)同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅱ)从上述40名学生中随机抽取2人,求这2人成绩都在[70,80的概率;
(Ⅲ)从上述40名学生中随机抽取2人,抽到的学生成绩在[40,60,记为0分,在[60,100],记为1分.用X表示抽取结束后的总记分,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案