相关习题
 0  171229  171237  171243  171247  171253  171255  171259  171265  171267  171273  171279  171283  171285  171289  171295  171297  171303  171307  171309  171313  171315  171319  171321  171323  171324  171325  171327  171328  171329  171331  171333  171337  171339  171343  171345  171349  171355  171357  171363  171367  171369  171373  171379  171385  171387  171393  171397  171399  171405  171409  171415  171423  266669 

科目: 来源:不详 题型:解答题

掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值和方差.

查看答案和解析>>

科目: 来源:不详 题型:解答题

张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.
(1)若,就会迟到,求张华不迟到的概率;(2)求EX

查看答案和解析>>

科目: 来源:不详 题型:解答题

某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:
电话同时
打入个数
0
1
2
3
4
5
6
7
8
概率
0.13
0.35
0.27
0.14
0.08
0.02
0.01
0
0
(1)若这段时间内,公司只安排了2位接线员(一个接线员一次只能接一个电话)
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话不能一次接通的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.
(2)求一周五个工作日的这段时间(8点至10点)内,电话同时打入数X的均值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

2009年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.
(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?
(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

设一台机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,一周5个工作日里无故障可获利润10万元,发生一次故障可获利5万元,发生两次故障没有利润,发生三次或三次以上故障就亏损2万元,求一周内平均获利多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本题满分12分)
某校积极响应《全面健身条例》,把周五下午5:00~6:00定为职工活动时间,并成立了行政和教师两支篮球队,但由于工作性质所限,每月(假设为4周)每支球队只能组织两次活动,且两支球队的活动时间是相互独立的。
(1)求这两支球队每月两次都在同一时间活动的频率;
(2)设这两支球队每月能同时活动的次数为,求随机变量的分布列和数学期望。

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本题满分14分)甲、乙、丙3人投篮,投进的概率分别是 .
(Ⅰ)现3人各投篮1次,分别求3人都没有投进和3人中恰有2人投进的概率.
(Ⅱ)用ξ表示乙投篮4次的进球数,求随机变量ξ的概率分布及数学期望Eξ.

查看答案和解析>>

科目: 来源:不详 题型:解答题

分别写在六张卡片上,放在一盒子中。 (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题




(1)   求乙运动员击中8环的概率,并求甲、乙同时击中9环以上(包括9环)的概率。
(2)   求甲运动员射击环数的概率分布列及期望;若从甲、乙运动员中只能挑选一名参加某大型比赛,你认为让谁参加比较合适?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图 A B两点有5条线并联,它们在单位时间内能通过的信息依次为2、3、4、3、2,现从中任取三条线且记在单位时间内通过的信息总量为ζ。

(Ⅰ)写出信息总量ζ的分布布列;
(Ⅱ)求信息总量ζ的数学期望。

查看答案和解析>>

同步练习册答案