科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
已知函数f(x)=
x3+ax2-bx(a,b∈R),若y=f(x)在区间[-1,2]上是单调减函数,则a+b的最小值为______.
查看答案和解析>>
科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
函数f(x)的定义域为D,若满足①f(x)在D内是单调函数,②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[-b,-a],那么y=f(x)叫做对称函数,现有f(x)=
-k是对称函数,那么k的取值范围是________.
查看答案和解析>>
科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
利民工厂某产品的年产量在100吨至300吨之间,年生产的总成本y(万元)与年产量x(吨)之间的关系可近似地表示为y=
-30x+4 000,则每吨的成本最低时的年产量为________.
查看答案和解析>>
科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图,下列关于函数f(x)的四个命题:
x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
![]()
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.其中真命题的个数是________.
查看答案和解析>>
科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
若a>1,设函数f(x)=ax+x-4的零点为m,函数g(x)=logax+x-4的零点为n,则
+
的最小值为________.
查看答案和解析>>
科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
对函数f(x)=xsin x,现有下列命题:①函数f(x)是偶函数;②函数f(x)的最小正周期是2π;③点(π,0)是函数f(x)的图象的一个对称中心;④函数f(x)在区间
上单调递增,在区间
上单调递减.其中是真命题的是________.(写出所有真命题的序号)
查看答案和解析>>
科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:解答题
已知函数f(x)=
.
(1)确定y=f(x)在(0,+∞)上的单调性;
(2)若a>0,函数h(x)=xf(x)-x-ax2在(0,2)上有极值,求实数a的取值范围.
查看答案和解析>>
科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:解答题
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x).当年产量不足80千件时,C(x)=
x2+10x(万元);当年产量不小于80千件时,C(x)=51x+
-1 450(万元),每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:解答题
已知函数f(x)=aln(2x+1)+bx+1.
(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y-3=0平行,求a的值;
(2)若b=
,试讨论函数y=f(x)的单调性.
查看答案和解析>>
科目: 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:解答题
已知二次函数f(x)的二次项系数为a,且不等式f(x)>2x的解集为(-1,3).
(1)若函数g(x)=xf(x)在区间
内单调递减,求a的取值范围;
(2)当a=-1时,证明方程f(x)=2x3-1仅有一个实数根;
(3)当x∈[0,1]时,试讨论|f(x)+(2a-1)x+3a+1|≤3成立的充要条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com