相关习题
 0  172634  172642  172648  172652  172658  172660  172664  172670  172672  172678  172684  172688  172690  172694  172700  172702  172708  172712  172714  172718  172720  172724  172726  172728  172729  172730  172732  172733  172734  172736  172738  172742  172744  172748  172750  172754  172760  172762  172768  172772  172774  172778  172784  172790  172792  172798  172802  172804  172810  172814  172820  172828  266669 

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第2课时练习卷(解析版) 题型:选择题

将图(1)中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图(2)),则在空间四面体ABCD中,ADBC的位置关系是(  )

A.相交且垂直 B.相交但不垂直

C.异面且垂直 D.异面但不垂直

 

查看答案和解析>>

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第2课时练习卷(解析版) 题型:填空题

已知EFGH是空间四点,命题甲:EFGH四点不共面,命题乙:直线EFGH不相交,则甲是乙成立的________条件.

 

查看答案和解析>>

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第2课时练习卷(解析版) 题型:填空题

如图,AB为圆O的直径,点C在圆周上(异于点AB),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:

PA平面MOBMO平面PACOC平面PAC平面PAC平面PBC.

其中正确的命题是________(填上所有正确命题的序号)

 

查看答案和解析>>

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第2课时练习卷(解析版) 题型:填空题

如图,正方体ABCDA1B1C1D1的棱长为1,点MAB1NBC1,且AMBN,有以下四个结论:

AA1MNA1C1MNMN平面A1B1C1D1MNA1C1是异面直线.其中正确命题的序号是________(注:把你认为正确命题的序号都填上)

 

查看答案和解析>>

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第2课时练习卷(解析版) 题型:解答题

已知四棱锥PABCD中,底面ABCD为正方形,PD平面ABCDECPD,且PD2EC.

(1)求证:BE平面PDA

(2)N为线段PB的中点,求证:NE平面PDB.

 

查看答案和解析>>

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第2课时练习卷(解析版) 题型:解答题

如图,在三棱锥SABC中,平面SAB平面SBCABBCASAB.AAFSB,垂足为F,点EG分别是棱SASC的中点.

求证:(1)平面EFG平面ABC(2)BCSA.

 

查看答案和解析>>

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第2课时练习卷(解析版) 题型:解答题

如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DEBCDCBCDEBC.

(1)证明:EO平面ACD

(2)证明:平面ACD平面BCDE.

 

查看答案和解析>>

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第3课时练习卷(解析版) 题型:解答题

如图四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O底面ABCDABAA1.

(1)证明:平面A1BD平面CD1B1

(2)求三棱柱ABDA1B1D1的体积.

 

查看答案和解析>>

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第3课时练习卷(解析版) 题型:解答题

如图,在三棱柱ABCA1B1C1中,侧棱AA1底面ABCABBCDAC的中点,AA1AB2BC3.

(1)求证:AB1平面BC1D

(2)求四棱锥BAA1C1D的体积.

 

查看答案和解析>>

科目: 来源:2014年高考数学(文)二轮专题复习与测试专题4第3课时练习卷(解析版) 题型:解答题

如图,在四棱锥PABCD中,平面PAD平面ABCDABDCPAD是等边三角形,已知AD4BD4AB2CD8.

(1)MPC上的一点,证明:平面MBD平面PAD

(2)M点位于线段PC什么位置时,PA平面MBD?

(3)求四棱锥PABCD的体积.

 

查看答案和解析>>

同步练习册答案