相关习题
 0  172843  172851  172857  172861  172867  172869  172873  172879  172881  172887  172893  172897  172899  172903  172909  172911  172917  172921  172923  172927  172929  172933  172935  172937  172938  172939  172941  172942  172943  172945  172947  172951  172953  172957  172959  172963  172969  172971  172977  172981  172983  172987  172993  172999  173001  173007  173011  173013  173019  173023  173029  173037  266669 

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练A组练习卷(解析版) 题型:解答题

如图,已知椭圆Cy21AB是四条直线x±2y±1所围成的两个顶点.

(1)P是椭圆C上任意一点,若mn,求证:动点Q(mn)在定圆上运动,并求出定圆的方程;

(2)MN是椭圆C上两上动点,且直线OMON的斜率之积等于直线OAOB的斜率之积,试探求OMN的面积是否为定值,说明理由.

 

查看答案和解析>>

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练A组练习卷(解析版) 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,满足8Sna4an3(nN*),且a1a2a7依次是等比数列{bn}的前三项.

(1)求数列{an}{bn}的通项公式;

(2)是否存在常数a0a≠1,使得数列{anlogabn}(nN*)是常数列?若存在,求出a的值;若不存在,说明理由.

 

查看答案和解析>>

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练A组练习卷(解析版) 题型:解答题

已知函数f(x)x22ax1(aR)f′(x)f(x)的导函数.

(1)x[2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;

(2)解关于x的方程f(x)|f′(x)|?

(3)设函数g(x),求g(x)x[2,4]时的最小值.

 

查看答案和解析>>

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练B组练习卷(解析版) 题型:解答题

设向量a(2sin θ)b(1cos θ)θ为锐角.

(1)a·b,求sin θcos θ的值;

(2)ab,求sin的值.

 

查看答案和解析>>

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练B组练习卷(解析版) 题型:解答题

如图,在四棱锥P ?ABCD中,PA底面ABCDPCAD,底面ABCD为梯形,ABDCABBCPAABBC,点E在棱PB上,且PE2EB.

(1)求证:平面PAB平面PCB

(2)求证:PD平面EAC.

 

查看答案和解析>>

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练B组练习卷(解析版) 题型:解答题

某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是:

P(x)x(x1)(412x)(x≤12xN*)

(1)写出第x月的需求量f(x)的表达式;

(2)若第x月的销售量g(x)

(单位:件),每件利润q(x)元与月份x的近似关系为:q(x),问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403)

 

查看答案和解析>>

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练B组练习卷(解析版) 题型:解答题

如图,椭圆1(ab0)的上,下两个顶点为AB,直线ly=-2,点P是椭圆上异于点AB的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为k1BP所在的直线的斜率为k2.若椭圆的离心率为,且过点A(0,1)

(1)k1·k2的值;

(2)MN的最小值;

(3)随着点P的变化,以MN为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.

 

查看答案和解析>>

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练B组练习卷(解析版) 题型:解答题

已知函数f(x)=-x3x2g(x)aln xaR.

(1)若对任意x[1e],都有g(x)≥x2(a2)x恒成立,求a的取值范围;

(2)F(x)P是曲线yF(x)上异于原点O的任意一点,在曲线yF(x)上总存在另一点Q,使得POQ中的POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

 

查看答案和解析>>

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练B组练习卷(解析版) 题型:解答题

已知数列{an}的前三项分别为a15a26a38,且数列{an}的前n项和Sn满足Snm(S2nS2m)(nm)2,其中mn为任意正整数.

(1)求数列{an}的通项公式及前n项和Sn

(2)求满足an33k2的所有正整数kn.

 

查看答案和解析>>

科目: 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练C组练习卷(解析版) 题型:解答题

已知向量mn.

(1)m·n1,求cos 的值;

(2)f(x)m·n,在ABC中,角ABC的对边分别是abc,且满足(2ac)cos Bbcos C,求函数f(A)的取值范围.

 

查看答案和解析>>

同步练习册答案