相关习题
 0  19277  19285  19291  19295  19301  19303  19307  19313  19315  19321  19327  19331  19333  19337  19343  19345  19351  19355  19357  19361  19363  19367  19369  19371  19372  19373  19375  19376  19377  19379  19381  19385  19387  19391  19393  19397  19403  19405  19411  19415  19417  19421  19427  19433  19435  19441  19445  19447  19453  19457  19463  19471  266669 

科目: 来源:不详 题型:解答题

设数列{an}是公比为q的等比数列,Sn是它的前n项和.
(1)求证:数列{Sn}不是等比数列;
(2)数列{Sn}是等差数列吗?为什么?

查看答案和解析>>

科目: 来源:河东区一模 题型:解答题

将等差数列{an}的所有项依次排列,并如下分组:(a1),(a2,a3),(a4,a5,a6,a7),…,其中第1组有1项,第2组有2项,第3组有4项,…,第n组有2n-1项,记Tn为第n组中各项的和,已知T3=-48,T4=0,
(I)求数列{an}的通项公式;
(II)求数列{Tn}的通项公式;
(III)设数列{ Tn }的前n项和为Sn,求S8的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知等差数列{an}中,a1+a2+a3=27,a6+a8+a10=63
(1)求数列{an}的通项公式;
(2)令bn=3an,求数列{bn}的前n项的和Sn

查看答案和解析>>

科目: 来源:东城区二模 题型:解答题

位于函数y=3x+
13
4
的图象上的一系列点P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,这一系列点的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.求点Pn的坐标;

查看答案和解析>>

科目: 来源:石景山区一模 题型:解答题

设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1
bn-1
)
(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

科目: 来源:丰台区二模 题型:解答题

已知等差数列{an}的首项a1=2,公差d≠0,且第一项、第三项、第十一项分别是等比数列{bn}的第一项、第二项、第三项.
(I)求数列{an}和{bn}的通项公式;
(II)设数列{cn}对任意的n∈N*均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1
,求数列{cn}的前n项和.

查看答案和解析>>

科目: 来源:安徽模拟 题型:解答题

设等差数列{an}的公差为d(d>0),且满足:a2•a5=55,a4+a6=22.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的前n和为an,数列{bn}和数列{cn}满足等式:bn=
cn
2n
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.
(1)求数列{bn}的通项bn
(2)设数列{an}的通项an=loga(1+
1
bn
)(其中a>0,且a≠1),记Sn是数列{an}的前n项和.试比较Sn
1
3
logabn+1的大小,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【解析】本小题考查直线方程的求法。画草图,由对称性可猜想

事实上,由截距式可得直线,直线,两式相减得,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故为所求的直线OF的方程。

答案

查看答案和解析>>

科目: 来源:松江区模拟 题型:解答题

已知an≥0,n∈N*,关于x的一元二次方程x2-anx-1=0的两实数根αn、βn满足  αn>βn,且a1=0,an+1nn
(1)求数列{αn}和{βn}的通项公式;
(2)求
lim
n→∞
β1+β2+…+βn
αn
的值.

查看答案和解析>>

同步练习册答案