相关习题
 0  196793  196801  196807  196811  196817  196819  196823  196829  196831  196837  196843  196847  196849  196853  196859  196861  196867  196871  196873  196877  196879  196883  196885  196887  196888  196889  196891  196892  196893  196895  196897  196901  196903  196907  196909  196913  196919  196921  196927  196931  196933  196937  196943  196949  196951  196957  196961  196963  196969  196973  196979  196987  266669 

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

如图中四个正方体图形,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是(  )

A.①③ B.①④ C.②③ D.②④

 

查看答案和解析>>

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:填空题

过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.

 

查看答案和解析>>

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:填空题

设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:

①若m∥l,且m⊥α,则l⊥α;

②若m∥l,且m∥α,则l∥α;

③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;

④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.

其中正确命题的个数是________.

 

查看答案和解析>>

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:填空题

对于平面M与平面N,有下列条件:①M,N都垂直于平面Q;②M、N都平行于平面Q;③M内不共线的三点到N的距离相等;④l,m为两条平行直线,且l∥M,m∥N;⑤l,m是异面直线,且l∥M,m∥M;l∥N,m∥N,则可判定平面M与平面N平行的条件是________(填正确结论的序号).

 

查看答案和解析>>

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:填空题

如图,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.

 

 

查看答案和解析>>

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:解答题

如图,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.

 

 

查看答案和解析>>

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=.

(1)求证:BC1∥平面A1CD;

(2)求三棱锥D-A1B1C的体积.

 

 

查看答案和解析>>

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

已知α,β是两个不同的平面,给出下列四个条件:

①存在一条直线a,a⊥α,a⊥β;

②存在一个平面γ,γ⊥α,γ⊥β;

③存在两条平行直线a,b,a?α,b?β,a∥β,b∥α;

④存在两条异面直线a,b,a?α,b?β,a∥β,b∥α.

可以推出α∥β的是(  )

A.①③ B.②④ C.①④ D.②③

 

查看答案和解析>>

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

在正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,其中有可能成立的个数为(  )

A.4 B.3 C.2 D.1

 

查看答案和解析>>

科目: 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:解答题

直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;

(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

 

查看答案和解析>>

同步练习册答案