相关习题
 0  19996  20004  20010  20014  20020  20022  20026  20032  20034  20040  20046  20050  20052  20056  20062  20064  20070  20074  20076  20080  20082  20086  20088  20090  20091  20092  20094  20095  20096  20098  20100  20104  20106  20110  20112  20116  20122  20124  20130  20134  20136  20140  20146  20152  20154  20160  20164  20166  20172  20176  20182  20190  266669 

科目: 来源:不详 题型:解答题

数列{an}中,Sn=4-an-
1
2n-2

(Ⅰ)求a1,a2,a3,a4
(Ⅱ)猜想an的表达式,并用数学归纳法加以证明.

查看答案和解析>>

科目: 来源:不详 题型:解答题

根据如图所示的程序框图,将输出a,b的值依次分别记为a1,a2,…,an,…,a2008;b1,b2,…,bn,…,b2008
(Ⅰ)求数列 { an} 的通项公式;
(Ⅱ)写出b1,b2,b3,b4,由此猜想{ bn}的通项公式,并证明你的证明;
(Ⅲ)在 ak与 ak+1中插入bk+1个3得到一个新数列 { cn },设数列 { cn }的前n项和为Sn,问是否存在这样的正整数m,使数列{ cn }的前m项的和Sm=2008,如果存在,求出m的值,如果不存在,请说明理由.
精英家教网

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知数列{an}的前n项和是Sn,且2Sn=2-an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ) 记bn=an+n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知数列{an}满足a1=2,an+1=2(1+
1
n
2an,n∈N*
(1)求数列{an}的通项;
(2)设bn=
an
n
,求
n




i=1
bi

(3)设cn=
n
an
,求证
n




i=1
Ci
17
24

查看答案和解析>>

科目: 来源: 题型:

(本题满分15分)

已知函数f (x)=x 2+ax ,且对任意的实数x都有f (1+x)=f (1-x) 成立.

(1)求实数 a的值;

(2)利用单调性的定义证明函数f(x)在区间[1,+∞上是增函数. w.

查看答案和解析>>

科目: 来源:洛阳模拟 题型:解答题

设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=n2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源:不详 题型:解答题

数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,n∈N*
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),Tn=b1+b2+…+bn(n∈N*)
,是否存在最大的整数m,使得对任意n∈N*,均有Tn
m
32
成立?若存在,求出m的值:若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

设数列{an}的前n项和为Sn.已知a1=1,Sn=
1
3
(an+1-1)
,n∈N*
(1)写出a2,a3的值,并求数列{an}的通项公式;
(2)记bn=
1
log4an+1log4an+2
,数列{bn}的前n项和为Tn,试比较Tn与1的大小.

查看答案和解析>>

科目: 来源:不详 题型:单选题

数列{an}中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜想当n≥1时,Sn=(  )
A.
2n+1
2n-1
B.
2n-1
2n-1
C.
n(n+1)
2n
D.1-
1
2n-1

查看答案和解析>>

科目: 来源:江苏模拟 题型:填空题

设数列xn满足log2xn+1=1+log2xn(n∈N*),且x1+x2+…+x10=10,记xn的前n项和为Sn,则S20=______.

查看答案和解析>>

同步练习册答案