相关习题
 0  210429  210437  210443  210447  210453  210455  210459  210465  210467  210473  210479  210483  210485  210489  210495  210497  210503  210507  210509  210513  210515  210519  210521  210523  210524  210525  210527  210528  210529  210531  210533  210537  210539  210543  210545  210549  210555  210557  210563  210567  210569  210573  210579  210585  210587  210593  210597  210599  210605  210609  210615  210623  266669 

科目: 来源: 题型:

已知|
a
|=4,|
b
|=2,且
a
b
夹角为120°求:
(Ⅰ)(
a
+3
b
)•(
a
-3
b
);
(Ⅱ)
a
a
+
b
的夹角θ.

查看答案和解析>>

科目: 来源: 题型:

北京时间2011年3月11日13:46,日本本州岛附近发生9.0级强烈地震,强震导致福岛第一核电站发生爆炸,爆炸导致的放射性物质泄漏,日本东京电力公司为反应堆注水冷却燃料池,于是产生了大量的废水.4月4日,东京电力公司决定直接向海中排放上万吨高核辐射浓度的污染水,4月7日玉筋鱼被查出放射性铯137超标.《中华人民共和国环境保护法》规定食品的铯含量不得超过1.00ppm.现从一批玉筋鱼中随机抽出15条作为样本,经检验各条鱼的铯含量的茎叶图(以小数点前一位数字为茎,小数点后一数字为叶)如图所示:
(Ⅰ)若某检查人员从这15条鱼中随机抽出3条,求恰有1条鱼铯含量超标的概率;
(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据,若从这批鱼中任选3条,记ξ表示抽到的鱼中铯含量超标的鱼的条数,求ξ分布列和数学期Eξ.

查看答案和解析>>

科目: 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为1.
(1)在空间中与点A距离为
1
3
的所有点构成曲面S,曲面S将正方体ABCD-A1B1C1D1分为两部分,若设这两部分的体积分别为V1,V2(其中V1>V2),求的
V1
V2
值;
(2)在正方体表面上与点A的距离为
2
3
3
的点形成一条空间曲线,求这条曲线的长度.

查看答案和解析>>

科目: 来源: 题型:

已知f(x)=2sin(2x+
π
3
).
(1)求f(x)的最小正周期;
(2)用五点作图法作出f(x)的简图.

查看答案和解析>>

科目: 来源: 题型:

第30届奥运会将于2012年7月27日在伦敦举行,射击运动员正在积极备战,若某运动员在1次射击中成绩为10环的概率为
1
3
,该运动员在4次射击中成绩为10环的次数为ξ.
(Ⅰ)求在4次射击中恰有2次射击成绩为10环的概率;
(Ⅱ)求在4次射击中至少有3次射击成绩为10环的概率;
(Ⅲ)求随机变量ξ的数学期望Eξ(结果用分数表示)

查看答案和解析>>

科目: 来源: 题型:

一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,收集数据如下:
零件数x(个) 10 20 30 40
加工时间y(min) 60 68 75 85
(Ⅰ)求回归方程;
(Ⅱ)如果加工的零件是50个,预测所要花费的时间.(参考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目: 来源: 题型:

已知△ABC的内角A,满足coa2A-
2
cosA+1≤0.
(1)求A的取值范围;
(2)求函数f(A)=λ(sinA+cosA)+sinAcosA的最小值.

查看答案和解析>>

科目: 来源: 题型:

已知直线l1:x+3y-3m2=0和直线l2:2x+y-m2-5m=0相交于点P(m∈R).
(1)用m表示直线l1与l2的交点P的坐标;
(2)当m为何值时,点P到直线x+y+3=0的距离最短?并求出最短距离.

查看答案和解析>>

科目: 来源: 题型:

设等差数列{an}的前n项和为Sn,且S4=4S2,a4=2a2+1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足
bn
an
=
1
2n
,n∈N*,设Tn为数列{bn}的前n项和,试比较Tn与3的大小.

查看答案和解析>>

科目: 来源: 题型:

是否存在常数a,b 使得2+4+6+…+(2n)=an2+bn对一切n∈N*恒成立?若存在,求出a,b的值,并用数学归纳法证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案