相关习题
 0  210501  210509  210515  210519  210525  210527  210531  210537  210539  210545  210551  210555  210557  210561  210567  210569  210575  210579  210581  210585  210587  210591  210593  210595  210596  210597  210599  210600  210601  210603  210605  210609  210611  210615  210617  210621  210627  210629  210635  210639  210641  210645  210651  210657  210659  210665  210669  210671  210677  210681  210687  210695  266669 

科目: 来源: 题型:

一个袋中装有四个完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和为奇数的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求0≤n-m≤3的概率.

查看答案和解析>>

科目: 来源: 题型:

设数列{an}的前n项和为Sn,且满足Sn+1=2an,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)在数列{an}的每两项之间都按照如下规则插入一些数后,构成新数列:an和an+1两项之间插入n个数,使这n+2个数构成等差数列,其公差记为dn,求数列{
1
dn
}的前n项的和Tn

查看答案和解析>>

科目: 来源: 题型:

在直角坐标系xoy中,已知向量
a
=(-1,2),点A(8,0),B(ksinθ,t),(0≤θ≤
π
2
,t∈R)
(1)若
AB
a
,且|
OA
|=|
AB
|,求向量
OB

(2)若向量
AB
与向量
a
共线,当k>4,且tsinθ取得最大值为4时,求
OA
OB

查看答案和解析>>

科目: 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求
TM
TN
的最小值;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求|OR|+|OS|的最小值.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线C:x2=2py(p>0)上纵坐标为p的点到焦点F的距离为3.
(Ⅰ)求抛物线方程;
(Ⅱ)若抛物线的准线与y轴交于点M,过M作直线与抛物线在第一象限的部分交于A,B两点,其中点B在A、M两点之间,直线AF与抛物线的另一个交点为C,求
|AB|
|AC|+8
的范围.

查看答案和解析>>

科目: 来源: 题型:

在直角坐标系中,A(3,0),B(0,3),C(2cosθ,2sinθ)
(1)若
AC
BC
,求sin2θ的值;
(2)
AC
BC
能否共线?说明理由.

查看答案和解析>>

科目: 来源: 题型:

图中的三个正方形块中,着色的正方形的个数依次构成一个数列{an}的前3项,根据着色的规律,这个数列的通项an=
 

查看答案和解析>>

科目: 来源: 题型:

已知点F是抛物线Γ:x2=2py(p>0)的焦点,点M(x0,1)到F的距离为2.
(Ⅰ)求抛物线方程;
(Ⅱ)设直线AB:y=x+b与曲线Γ相交于A,B两点,若AB的中垂线与y轴的交点为(0,4),求b的值.
(Ⅲ)抛物线Γ上是否存在异于点A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线.若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
3
sin(ωx+φ)+2sin2
ωx+φ
2
-1(ω>0,0<φ<π)为奇函数,且相邻两对称轴间的距离为
π
2

(1)当x∈(-
π
2
π
4
)时,求f(x)的单调递减区间;
(2)将函数y=f(x)的图象沿x轴方向向右平移
π
6
个单位长度,再把横坐标缩短到原来的
1
2
(纵坐标不变),得到函数y=g(x)的图象.当x∈[-
π
12
π
6
]时,求函数g(x)的值域.

查看答案和解析>>

科目: 来源: 题型:

已知直线l的参数方程为
x=
2
2
t
y=1+
2
2
t
(t为参数),圆M的直角坐标方程为(x-a)2+(y-b)2=1,且圆M上的点到直线l的最小距离为1.
(1)求a-b的值;
(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆N的极坐标方程为ρ=2cosθ,当a=1,b=1时,求圆M和圆N公共弦长.

查看答案和解析>>

同步练习册答案