相关习题
 0  210537  210545  210551  210555  210561  210563  210567  210573  210575  210581  210587  210591  210593  210597  210603  210605  210611  210615  210617  210621  210623  210627  210629  210631  210632  210633  210635  210636  210637  210639  210641  210645  210647  210651  210653  210657  210663  210665  210671  210675  210677  210681  210687  210693  210695  210701  210705  210707  210713  210717  210723  210731  266669 

科目: 来源: 题型:

如图,在平行四边形ABCD中,AD=2AB=2,∠BAD=60°,M、N分别是对角线BD、AC上的点,AC、BD相交于点O,已知BM=
1
3
BO,ON=
1
3
OC.设向量
AB
=
a
AD
=
b

(1)试用
a
b
表示
MN

(2)求|
MN
|

查看答案和解析>>

科目: 来源: 题型:

有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边位置;
(2)全体排成一行,男生不能排在一起;
(3)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;
(4)全体排成一行,甲、乙两人中间必须有3人.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=exsin(
3
x+φ)(0<φ<π)且
3
3
π是函数f(x)的一个极值点,f′(x)是函数f(x)的导函数.
(Ⅰ)求φ的值;
(Ⅱ)设g(x)=f′(x),求函数g(x)的单调递增区间;
(Ⅲ)证明:当x>0时,|f′(x)|<2
3
xex

查看答案和解析>>

科目: 来源: 题型:

在正数数列{an}(n∈N*)中,Sn为{an}的前n项和,若点(an,Sn)在函数y=
c2-x
c-1
的图象上,其中c为正常数,且c≠1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数M,使得当n>M时,a1•a3•a5…a2n-1>a101恒成立?若存在,求出使结论成立的c的取值范围和相应的M的最小值.
(Ⅲ)若存在一个等差数列{bn},对任意n∈N*,都有b1an+b2an-1+b3an-2+…+bn-1a2+bna1=3n-
5
3
n-1
成立,求{bn}的通项公式及c的值.

查看答案和解析>>

科目: 来源: 题型:

已知在△ABC中,角A、B、C的对边分别为a,b,c,且满足条件:a(sinA-sinC)+csinC=bsinB.
(Ⅰ)求角B的大小;
(Ⅱ)求函数f(x)=sinx•cos(x+B)+
3
4
(x∈[0,
π
2
])的值域.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x3-12x
(1)求函数f(x)的极值;
(2)当x∈[-3,3]时,求f(x)的最值.

查看答案和解析>>

科目: 来源: 题型:

已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和n个黑球(n为正整数).现从甲、乙两个盒内各任取2个球,若取出的4个球均为黑球的概率为
1
5
,求
(Ⅰ)n的值;
(Ⅱ)取出的4个球中黑球个数大于红球个数的概率.



查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x2-4x+a+3,a∈R
(1)若函数y=f(x)在[-1,1]上存在零点,求a的取值范围;
(2)设函数g(x)=bx+5-2b,b∈R,当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

某高校的自主招生考试设置了自荐、笔试和面试三个环节,并规定某个环节通过后才能进入下一环节,且三个环节都通过才能被录取.某学生A三个环节依次通过的概率组成一个公差为
1
8
的等差数列,且第一个环节不通过的概率超过
1
2
,第一个环节通过但第二个环节不通过的概率为
5
32
,假定每个环节学生是否通过是相互独立的.
(Ⅰ)求学生A被录取的概率;
(Ⅱ)记学生A通过的环节数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

某工厂随机抽取处12件A型产品和18件B型产品,将这30件产品的尺寸编成如图所示的茎叶图(单位:cm),若尺寸在175cm以上(包括175cm)的产品定义为“标准件”,尺寸在175cm以下(不包括175cm)的产品定义为“非标准件”
(1)如果用分层抽样的方法从这30件“标准件”和“非标准件”中选取5件,求出这5件产品中“标准件”和“非标准件”的件数;
(2)从(1)中抽出的5件中抽取2件,那么至少有一件是“标准件”的概率是多少?

查看答案和解析>>

同步练习册答案