相关习题
 0  210639  210647  210653  210657  210663  210665  210669  210675  210677  210683  210689  210693  210695  210699  210705  210707  210713  210717  210719  210723  210725  210729  210731  210733  210734  210735  210737  210738  210739  210741  210743  210747  210749  210753  210755  210759  210765  210767  210773  210777  210779  210783  210789  210795  210797  210803  210807  210809  210815  210819  210825  210833  266669 

科目: 来源: 题型:

如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线.
(1)求证:OB⊥AC;
(2)若AC与圆柱下底面所成的角为30°,OA=2.求三棱锥A-BOC的体积.

查看答案和解析>>

科目: 来源: 题型:

宇宙深处有一颗美丽的行星,这个行星是一个半径为r(r>0)的球.人们在行星表面建立了与地球表面同样的经纬度系统.已知行星表面上的A点落在北纬60°,东经30°;B点落在东经30°的赤道上;C点落在北纬60°,东经90°.在赤道上有点P满足PB两点间的球面距离等于AB两点间的球面距离.
(1)求AC两点间的球面距离;
(2)求P点的经度;
(3)求AP两点间的球面距离.

查看答案和解析>>

科目: 来源: 题型:

函数f(x)对任意x∈R都有f(x)+f(1-x)=
1
2

(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)数列{an}满足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),数列{an}是等差数列吗?请给予证明;
(3)在第(2)问的条件下,若数列{bn}满足b1=-6,16an2-4(bn+1-bn-3)an+bn+1+2bn+2=0,试求数列{bn}的通项公式.

查看答案和解析>>

科目: 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,.
(Ⅰ)求证:AC⊥平面PBD;
(Ⅱ)若∠BAD=60°,AD=2,PD=3,求二面角P-BC-A的大小.

查看答案和解析>>

科目: 来源: 题型:

已知等腰Rt△ABC,BC⊥AC,将△ABC绕着边AB旋转θ角到△ABC′,连接CC′,D为线段CC′的中点,P是线段AB上任一点.
(1)求证:CC′⊥DP;
(2)当三棱锥B-ACC′的体积达到最大时,点P在线段AB的什么位置时,直线AC与平面CDP所成的角最大?为多少?

查看答案和解析>>

科目: 来源: 题型:

(1)已知二项式(x2+
1
2
x
n(n∈N*)展开式中,前三项的二项式系数和为56,求展开式中的常数项;
(2)(1-2x)2014=a0+a1x+a2x2+…+a2014x2014(x∈R)
①求
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
的值;
②求a1+2a2+3a3+4a4+…+2014a2014的值.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),离心率e=
2
2
,A,B是椭圆上的两动点,动点P满足
OP
=
OA
OB
,(其中实数λ为常数).
(1)求椭圆标准方程;
(2)当λ=1,且直线AB过F点且垂直于x轴时,求过A,B,P三点的外接圆方程;
(3)若直线OA与OB的斜率乘积kOA•kOB=-
1
2
,问是否存在常数λ,使得动点P满足PG+PQ=4,其中G(-
2
,0),Q(
2
,0),若存在求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

设抛物线C:y2=2px(p>0)的焦点为F,直线l过F且与抛物线C交于M、N两点,已知直线l与x轴垂直时,△OMN的面积为2(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)问是否存在直线l,使得以M、N为对角线的正方形的第三个顶点恰好在y轴上,若存在,求直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知向量
a
=(cosα,-1),
b
=(2,1+sinα),且
a
b
=-1
(1)求tanα的值      
(2)求tan(α+
π
4
)的值.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的前n项和为Sn,满足Sn=2an-2,数列{bn}满足{bn}=log2an
(1)求数列{an}和{bn}的通项公式;
(2)记{
1
bnbn+1
}的前n项和为Tn,求Tn
(3)若不等式λ2-
3
2
λ>Tn对任意n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案